scholarly journals Generalized Solutions and Spectrum for Dirichlet Forms on Graphs

Author(s):  
Sebastian Haeseler ◽  
Matthias Keller
Author(s):  
A. T. Marufiy ◽  
A. S. Kalykov

In this article, an analytical solution is obtained for the problem of bending a semi-infinite plate on an elastic Winkler base, taking into account incomplete contact with the base and the influence of longitudinal forces applied in the middle plane of the plate. The analytical solution is obtained by the method of generalized solutions using integral Fourier transforms. Any analytical solution is the result, approaching the actual working conditions of the designed structures.


2017 ◽  
Vol 272 (8) ◽  
pp. 3311-3346 ◽  
Author(s):  
Alexander Grigor'yan ◽  
Eryan Hu ◽  
Jiaxin Hu

2013 ◽  
Vol 11 (02) ◽  
pp. 1350017 ◽  
Author(s):  
GÜNTHER HÖRMANN ◽  
SANJA KONJIK ◽  
LJUBICA OPARNICA

We study the initial-boundary value problem for an Euler–Bernoulli beam model with discontinuous bending stiffness laying on a viscoelastic foundation and subjected to an axial force and an external load both of Dirac-type. The corresponding model equation is a fourth-order partial differential equation and involves discontinuous and distributional coefficients as well as a distributional right-hand side. Moreover the viscoelastic foundation is of Zener-type and described by a fractional differential equation with respect to time. We show how functional analytic methods for abstract variational problems can be applied in combination with regularization techniques to prove existence and uniqueness of generalized solutions.


2014 ◽  
Author(s):  
T. Hristov ◽  
N. Popivanov ◽  
M. Schneider

2008 ◽  
Vol 51 (2) ◽  
pp. 529-543 ◽  
Author(s):  
Feng-Yu Wang

AbstractCorresponding to known results on Orlicz–Sobolev inequalities which are stronger than the Poincaré inequality, this paper studies the weaker Orlicz–Poincaré inequality. More precisely, for any Young function $\varPhi$ whose growth is slower than quadric, the Orlicz–Poincaré inequality$$ \|f\|_\varPhi^2\le C\E(f,f),\qquad\mu(f):=\int f\,\mathrm{d}\mu=0 $$is studied by using the well-developed weak Poincaré inequalities, where $\E$ is a conservative Dirichlet form on $L^2(\mu)$ for some probability measure $\mu$. In particular, criteria and concrete sharp examples of this inequality are presented for $\varPhi(r)=r^p$ $(p\in[1,2))$ and $\varPhi(r)= r^2\log^{-\delta}(\mathrm{e} +r^2)$ $(\delta>0)$. Concentration of measures and analogous results for non-conservative Dirichlet forms are also obtained. As an application, the convergence rate of porous media equations is described.


Sign in / Sign up

Export Citation Format

Share Document