On Spaces of Piecewise Polynomials with Boundary Conditions. I. Rectangles

Author(s):  
C. K. Chui ◽  
L. L. Schumaker
2012 ◽  
Vol 12 (1) ◽  
pp. 109-134 ◽  
Author(s):  
Gabriel N. Gatica ◽  
Antonio Márquez ◽  
Manuel A. Sánchez

AbstractWe consider a non-standard mixed method for the Stokes problem in ℝn, n Є {2,3}, with Dirichlet boundary conditions, in which, after using the incompressibility condition to eliminate the pressure, the pseudostress tensor σ and the velocity vector u become the only unknowns. Then, we apply the Babuška-Brezzi theory to prove the well-posedness of the corresponding continuous and discrete formulations. In particular, we show that Raviart-Thomas elements of order k≥0 for σ and piecewise polynomials of degree k for u ensure unique solvability and stability of the associated Galerkin scheme. In addition, we introduce and analyze an augmented approach for our pseudostress-velocity formulation. The methodology employed is based on the introduction of the Galerkin least-squares type terms arising from the constitutive and equilibrium equations, and the Dirichlet boundary condition for the velocity, all of them multiplied by suitable stabilization parameters. We show that these parameters can be chosen so that the resulting augmented variational formulation is defined by a strongly coercive bilinear form, whence the associated Galerkin scheme becomes well posed for any choice of finite element subspaces. For instance, Raviart-Thomas elements of order k≥0 for σ and continuous piecewise polynomials of degree k+1 for u become a feasible choice in this case. Finally, extensive numerical experiments illustrating the good performance of the methods and comparing them with other procedures available in the literature, are provided.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


1981 ◽  
Vol 64 (11) ◽  
pp. 18-26 ◽  
Author(s):  
Tetsuya Nomura ◽  
Nobuhiro Miki ◽  
Nobuo Nagai

2018 ◽  
Vol 103 (9) ◽  
pp. 1019-1038 ◽  
Author(s):  
Lin Wang ◽  
Bradley P. Owens ◽  
Junchao (Jason) Li ◽  
Lihua Shi

2009 ◽  
Author(s):  
Sabrina Volpone ◽  
Cristina Rubino ◽  
Ari A. Malka ◽  
Christiane Spitzmueller ◽  
Lindsay Brown

2008 ◽  
Author(s):  
Silke Atmaca ◽  
Antje Hollander ◽  
Wolfgang Prinz

Sign in / Sign up

Export Citation Format

Share Document