Constructing Feedback Control in Differential Games by Use of “Central” Trajectories

1993 ◽  
pp. 221-247 ◽  
Author(s):  
G. Sonnevend
2000 ◽  
Vol 02 (02n03) ◽  
pp. 173-192 ◽  
Author(s):  
JEAN MICHEL COULOMB ◽  
VLADIMIR GAITSGORY

A two-player nonzero-sum differential game is considered. Given a pair of threat payoff functions, we characterise a set of pairs of acceptable feedback controls. Any such pair induces a history-dependent Nash δ-equilibrium as follows: the players agree to use the acceptable controls unless one of them deviates. If this happens, a feedback control punishment is implemented. The problem of finding a pair of "acceptable" controls is significantly simpler than the problem of finding a feedback control Nash equilibrium. Moreover, the former may have a solution in case the latter does not. In addition, if there is a feedback control Nash equilibrium, then our technique gives a subgame perfect Nash δ-equilibrium that might improve the payoff function for at least one player.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 261-269
Author(s):  
Wei Ren ◽  
Brennan Dubord ◽  
Jason Johnson ◽  
Bruce Allison

Tight control of raw green liquor total titratable alkali (TTA) may be considered an important first step towards improving the overall economic performance of the causticizing process. Dissolving tank control is made difficult by the fact that the unknown smelt flow is highly variable and subject to runoff. High TTA variability negatively impacts operational costs through increased scaling in the dissolver and transfer lines, increased deadload in the liquor cycle, under- and over-liming, increased energy consumption, and increased maintenance. Current practice is to use feedback control to regulate the TTA to a target value through manipulation of weak wash flow while simultaneously keeping dissolver density within acceptable limits. Unfortunately, the amount of variability reduction that can be achieved by feedback control alone is fundamentally limited by the process dynamics. One way to improve upon the situation would be to measure the smelt flow and use it as a feedforward control variable. Direct measurement of smelt flow is not yet possible. The use of an indirect measurement, the dissolver vent stack temperature, is investigated in this paper as a surrogate feedforward variable for dissolving tank TTA control. Mill trials indicate that significant variability reduction in the raw green liquor TTA is possible and that the control improvements carry through to the downstream processes.


1975 ◽  
Vol 80 (1_Suppla) ◽  
pp. S76
Author(s):  
N. Parvizi ◽  
F. Elsaesser ◽  
D. Smidt ◽  
F. Ellendorff

Sign in / Sign up

Export Citation Format

Share Document