Structure of mod p H-spaces with finiteness conditions

Author(s):  
Juan A. Crespo
Keyword(s):  
Author(s):  
Ahmed Abbes ◽  
Michel Gros

This chapter continues the construction and study of the p-adic Simpson correspondence and presents the global aspects of the theory of representations of the fundamental group and the torsor of deformations. After fixing the notation and general conventions, the chapter develops preliminaries and then introduces the results and complements on the notion of locally irreducible schemes. It also fixes the logarithmic geometry setting of the constructions and considers a number of results on the Koszul complex. Finally, it develops the formalism of additive categories up to isogeny and describes the inverse systems of a Faltings ringed topos, with a particular focus on the notion of adic modules and the finiteness conditions adapted to this setting. The chapter rounds up the discussion with sections on Higgs–Tate algebras and Dolbeault modules.


2018 ◽  
Vol 68 (5) ◽  
pp. 975-980
Author(s):  
Zhongyan Shen ◽  
Tianxin Cai

Abstract In 2014, Wang and Cai established the following harmonic congruence for any odd prime p and positive integer r, $$\sum_{\begin{subarray}{c}i+j+k=p^{r}\\ i,j,k\in\mathcal{P}_{p}\end{subarray}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} \quad\quad(\text{mod} \,\, {p^{r}}),$$ where $ \mathcal{P}_{n} $ denote the set of positive integers which are prime to n. In this note, we obtain the congruences for distinct odd primes p, q and positive integers α, β, $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{2pq}\end{subarray}}\frac{1}{ijk}\equiv\frac{7}{8}\left(2-% q\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{% \alpha}} $$ and $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{pq}\end{subarray}}\frac{(-1)^{i}}{ijk}\equiv\frac{1}{2}% \left(q-2\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}% \pmod{p^{\alpha}}. $$


2021 ◽  
Vol 573 ◽  
pp. 270-296
Author(s):  
Lingling Tan ◽  
Dingguo Wang ◽  
Tiwei Zhao

1960 ◽  
Vol 14 (71) ◽  
pp. 284
Author(s):  
J. W. W. ◽  
A. Gloden
Keyword(s):  

2016 ◽  
Vol 28 (6) ◽  
Author(s):  
Siegfried Böcherer ◽  
Toshiyuki Kikuta

AbstractWe show that a Siegel modular form with integral Fourier coefficients in a number field


2017 ◽  
Vol 50 (1) ◽  
pp. 17-25
Author(s):  
Peter H. Kropholler ◽  
Joseph P. Mullaney

2010 ◽  
Vol 52 (A) ◽  
pp. 53-59 ◽  
Author(s):  
PAULA A. A. B. CARVALHO ◽  
CHRISTIAN LOMP ◽  
DILEK PUSAT-YILMAZ

AbstractThe purpose of this paper is to study finiteness conditions on injective hulls of simple modules over Noetherian down-up algebras. We will show that the Noetherian down-up algebras A(α, β, γ) which are fully bounded are precisely those which are module-finite over a central subalgebra. We show that injective hulls of simple A(α, β, γ)-modules are locally Artinian provided the roots of X2 − αX − β are distinct roots of unity or both equal to 1.


Sign in / Sign up

Export Citation Format

Share Document