arithmetic group
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Vol 7 ◽  
Author(s):  
AKSHAY VENKATESH

We describe a graded extension of the usual Hecke algebra: it acts in a graded fashion on the cohomology of an arithmetic group $\unicode[STIX]{x1D6E4}$ . Under favorable conditions, the cohomology is freely generated in a single degree over this graded Hecke algebra. From this construction we extract an action of certain $p$ -adic Galois cohomology groups on $H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q}_{p})$ , and formulate the central conjecture: the motivic $\mathbf{Q}$ -lattice inside these Galois cohomology groups preserves $H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q})$ .


2018 ◽  
Vol 116 (2) ◽  
pp. 442-449 ◽  
Author(s):  
Suzana Milea ◽  
Christopher D. Shelley ◽  
Martin H. Weissman

In the 1990s, J. H. Conway published a combinatorial-geometric method for analyzing integer-valued binary quadratic forms (BQFs). Using a visualization he named the “topograph,” Conway revisited the reduction of BQFs and the solution of quadratic Diophantine equations such as Pell’s equation. It appears that the crux of his method is the coincidence between the arithmetic group PGL2(Z) and the Coxeter group of type (3,∞). There are many arithmetic Coxeter groups, and each may have unforeseen applications to arithmetic. We introduce Conway’s topograph and generalizations to other arithmetic Coxeter groups. This includes a study of “arithmetic flags” and variants of binary quadratic forms.


2018 ◽  
Vol 19 (2) ◽  
pp. 537-569
Author(s):  
A. Ash ◽  
P. E. Gunnells ◽  
M. McConnell ◽  
D. Yasaki

Let $G$ be a semisimple Lie group with associated symmetric space $D$, and let $\unicode[STIX]{x1D6E4}\subset G$ be a cocompact arithmetic group. Let $\mathscr{L}$ be a lattice inside a $\mathbb{Z}\unicode[STIX]{x1D6E4}$-module arising from a rational finite-dimensional complex representation of $G$. Bergeron and Venkatesh recently gave a precise conjecture about the growth of the order of the torsion subgroup $H_{i}(\unicode[STIX]{x1D6E4}_{k};\mathscr{L})_{\operatorname{tors}}$ as $\unicode[STIX]{x1D6E4}_{k}$ ranges over a tower of congruence subgroups of $\unicode[STIX]{x1D6E4}$. In particular, they conjectured that the ratio $\log |H_{i}(\unicode[STIX]{x1D6E4}_{k};\mathscr{L})_{\operatorname{tors}}|/[\unicode[STIX]{x1D6E4}:\unicode[STIX]{x1D6E4}_{k}]$ should tend to a nonzero limit if and only if $i=(\dim (D)-1)/2$ and $G$ is a group of deficiency $1$. Furthermore, they gave a precise expression for the limit. In this paper, we investigate computationally the cohomology of several (non-cocompact) arithmetic groups, including $\operatorname{GL}_{n}(\mathbb{Z})$ for $n=3,4,5$ and $\operatorname{GL}_{2}(\mathscr{O})$ for various rings of integers, and observe its growth as a function of level. In all cases where our dataset is sufficiently large, we observe excellent agreement with the same limit as in the predictions of Bergeron–Venkatesh. Our data also prompts us to make two new conjectures on the growth of torsion not covered by the Bergeron–Venkatesh conjecture.


2013 ◽  
Vol 177 (2) ◽  
pp. 395-423 ◽  
Author(s):  
Alexandru Dimca ◽  
Stefan Papadima

Sign in / Sign up

Export Citation Format

Share Document