The State Spaces

Author(s):  
Daniel Alpay ◽  
Aad Dijksma ◽  
James Rovnyak ◽  
Hendrik de Snoo
Keyword(s):  
2004 ◽  
Vol 36 (01) ◽  
pp. 243-266
Author(s):  
Søren F. Jarner ◽  
Wai Kong Yuen

In this paper we derive bounds on the conductance and hence on the spectral gap of a Metropolis algorithm with a monotone, log-concave target density on an interval of ℝ. We show that the minimal conductance set has measure ½ and we use this characterization to bound the conductance in terms of the conductance of the algorithm restricted to a smaller domain. Whereas previous work on conductance has resulted in good bounds for Markov chains on bounded domains, this is the first conductance bound applicable to unbounded domains. We then show how this result can be combined with the state-decomposition theorem of Madras and Randall (2002) to bound the spectral gap of Metropolis algorithms with target distributions with monotone, log-concave tails on ℝ.


Author(s):  
Bo Henry Lindqvist

Consider a multistate system with partially ordered state space E, which is divided into a set C of working states and a set D of failure states. Let X(t) be the state of the system at time t and suppose {X(t)} is a stochastically monotone Markov chain on E. Let T be the failure time, i.e., the hitting time of the set D. We derive upper and lower bounds for the reliability of the system, defined as Pm(T > t) where m is the state of perfect system performance.


1975 ◽  
Vol 30 (11) ◽  
pp. 1361-1371 ◽  
Author(s):  
H. Stumpf ◽  
K. Scheerer

Functional quantum theory is defined by an isomorphism of the state space H of a conventional quantum theory into an appropriate functional state space D It is a constructive approach to quantum theory in those cases where the state spaces H of physical eigenstates cannot be calculated explicitly like in nonlinear spinor field quantum theory. For the foundation of functional quantum theory appropriate functional state spaces have to be constructed which have to be representation spaces of the corresponding invariance groups. In this paper, this problem is treated for the spinor field. Using anticommuting source operator, it is shown that the construction problem of these spaces is tightly connected with the construction of appropriate relativistic function spaces. This is discussed in detail and explicit representations of the function spaces are given. Imposing no artificial restrictions it follows that the resulting functional spaces are indefinite. Physically the indefiniteness results from the inclusion of tachyon states. It is reasonable to assume a tight connection of these tachyon states with the ghost states introduced by Heisenberg for the regularization of the nonrenormalizable spinor theory


1997 ◽  
Vol 26 (519) ◽  
Author(s):  
Allan Cheng ◽  
Søren Christensen ◽  
Kjeld Høyer Mortensen

In this paper we present a CTL-like logic which is interpreted over the state spaces of Coloured Petri Nets. The logic has been designed to express properties of both state and transition information. This is possible because the state spaces are labelled transition systems. We compare the expressiveness of our logic with CTL's. Then, we present a model checking algorithm which for efficiency reasons utilises strongly connected components and formula reduction rules. We present empirical results for non-trivial examples and compare the performance of our algorithm with that of Clarke, Emerson, and Sistla.


1997 ◽  
Vol 26 (524) ◽  
Author(s):  
Søren Christensen ◽  
Laure Petrucci

<p>State Space Analysis is one of the most developed analysis methods for Petri Nets. The main problem of state space analysis is the size of the state spaces. Several ways to reduce it have been proposed but cannot yet handle industrial size systems.</p><p>Large models often consist of a set of modules. Local properties of each module can be checked separately, before checking the validity of the entire system. We want to avoid the construction of a single state space of the entire system.</p><p>When considering transition sharing, the behaviour of the total system can be capture by the state spaces of modules combined with a Synchronisation Graph. To verify that we do not lose information we show how the full state space can be conctructed.</p><p>We show how it is possible to determine usual Petri Nets properites, without unfolding to the ordinary state space.</p>


Sign in / Sign up

Export Citation Format

Share Document