Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src

Author(s):  
F. Sharp ◽  
D.-Z. Liu ◽  
X. Zhan ◽  
B. P. Ander
Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Maulana Ikhsan ◽  
Marietta Zille

Introduction: Intracerebral hemorrhage (ICH) is a type of stroke caused by the loss of vascular integrity leading to bleeding within the brain tissue. Hematoma-derived factors cause secondary injury mechanisms such as cell death days to weeks after the event and in regions distant from the primary insult. Increasing evidence suggests that hemoglobin released by the hematoma is one of the major contributors to neuronal injury in ICH. To date, it is unclear whether brain endothelial cells (EC) are similarly vulnerable to hemolysis products and undergo regulated cell death. Hypothesis: We hypothesized that brain EC undergo multiple, different modes of cell death after ICH and that the underlying mechanisms are different compared to neurons. Methods: We systematically investigated cell death mechanisms in brain EC after exposure to the hemolysis product hemin. We used chemical inhibitors of apoptosis, autophagy, ferroptosis, necroptosis, and parthanatos and assessed biochemical markers of these cell death modes. Results: Brain EC viability was concentration-dependently decreased, starting at higher hemin concentrations than neurons. Treatment of EC with ferroptosis inhibitors protective against hemin toxicity in neurons and against ICH in vivo showed that only N-acetylcysteine and deferoxamine protected brain EC, while ferrostatin-1 and U0126 did not abrogate EC death. The autophagy inhibitor bafilomycin A1 also reduced EC death and hemin increased the expression of the autophagy marker LC3. While inhibitors against apoptosis and parthanatos were not effective, the necroptosis inhibitor GSK872 demonstrated a partial protective effect. Conclusions: Our data suggest that ICH induces different mechanisms of death in EC (ferroptosis and autophagy) compared to neurons (ferroptosis and necroptosis) and may thus warrant a combinatorial therapeutic approach. Further investigations in human and ovine ICH brain tissue are ongoing.


2018 ◽  
Vol 134 ◽  
pp. 240-248 ◽  
Author(s):  
D. Andrew Wilkinson ◽  
Aditya S. Pandey ◽  
B. Gregory Thompson ◽  
Richard F. Keep ◽  
Ya Hua ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 37-37
Author(s):  
James K. Kuan ◽  
Robert Kaufman ◽  
Jonathan L. Wright ◽  
Charles Mock ◽  
Avery B. Nathens ◽  
...  

1992 ◽  
Vol 3 (3) ◽  
pp. 685-702 ◽  
Author(s):  
Christopher B. Shields ◽  
William A. Friedman

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S481-S481
Author(s):  
Soon-Tae Lee ◽  
Kon Chu ◽  
Manho Kim ◽  
Jae-kyu Roh

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S505-S505
Author(s):  
Huijin Yan ◽  
Mengzhou Xue ◽  
Christopher Power ◽  
Marc R Del-Bigio ◽  
James Peeling

Sign in / Sign up

Export Citation Format

Share Document