Blow-up of Solutions to Nonlinear Hyperbolic Equations and Hyperbolic-Elliptic Inequalities

Author(s):  
Yuming Qin
2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Ülkü Dinlemez ◽  
Esra Aktaş

We consider an initial-boundary value problem to a nonlinear string equations with linear damping term. It is proved that under suitable conditions the solution is global in time and the solution with a negative initial energy blows up in finite time.


2016 ◽  
Vol 13 (04) ◽  
pp. 661-683
Author(s):  
Yongcai Geng

We study the Cauchy problem for multi-dimensional compressible relativistic hydrodynamics in the presence of a radiation field. First, based on the theory of quasilinear symmetric hyperbolic, we establish the local existence of smooth solutions for both non-vacuum and vacuum cases. Next, in the spirit of Sideris’ work [T. Sideris, Formation of singularities of solutions to nonlinear hyperbolic equations, Arch. Ration. Mech. Anal. 86 (1984) 369–381; T. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys. 101 (1985) 475–485], we show that smooth solutions blow-up in finite time if the initial data is compactly supported and large enough. Compared with the previous work, the main difficulties of the first problem lie in two aspects, we must first deal with the source terms relying on radiative quantities, and we also need to solve out the new coefficients matrices under the Lorentz transformation for vacuum case. The second difficulty arises on how to verifying that the smooth solution has finite propagation speed..


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1483
Author(s):  
Shanqin Chen

Weighted essentially non-oscillatory (WENO) methods are especially efficient for numerically solving nonlinear hyperbolic equations. In order to achieve strong stability and large time-steps, strong stability preserving (SSP) integrating factor (IF) methods were designed in the literature, but the methods there were only for one-dimensional (1D) problems that have a stiff linear component and a non-stiff nonlinear component. In this paper, we extend WENO methods with large time-stepping SSP integrating factor Runge–Kutta time discretization to solve general nonlinear two-dimensional (2D) problems by a splitting method. How to evaluate the matrix exponential operator efficiently is a tremendous challenge when we apply IF temporal discretization for PDEs on high spatial dimensions. In this work, the matrix exponential computation is approximated through the Krylov subspace projection method. Numerical examples are shown to demonstrate the accuracy and large time-step size of the present method.


2008 ◽  
Vol 15 (3) ◽  
pp. 555-569
Author(s):  
Tariel Kiguradze

Abstract In the rectangle Ω = [0, a] × [0, b] the nonlinear hyperbolic equation 𝑢(2,2) = 𝑓(𝑥, 𝑦, 𝑢) with the continuous right-hand side 𝑓 : Ω × ℝ → ℝ is considered. Unimprovable in a sense sufficient conditions of solvability of Dirichlet, Dirichlet–Nicoletti and Nicoletti boundary value problems are established.


Sign in / Sign up

Export Citation Format

Share Document