Some Iterative Methods for Fixed Point Problems

2013 ◽  
pp. 273-300 ◽  
Author(s):  
Q. H. Ansari ◽  
D. R. Sahu
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhangsong Yao ◽  
Yan-Kuen Wu ◽  
Ching-Feng Wen

Iterative methods for solving variational inclusions and fixed-point problems have been considered and investigated by many scholars. In this paper, we use the Halpern-type method for finding a common solution of variational inclusions and fixed-point problems of pseudocontractive operators. We show that the proposed algorithm has strong convergence under some mild conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Xu ◽  
Yuanheng Wang

This paper deals with a new iterative algorithm for solving hierarchical fixed point problems of an infinite family of pseudocontractions in Hilbert spaces byyn=βnSxn+(1-βn)xn,xn+1=PC[αnf(xn)+(1-αn)∑i=1∞μi(n)Tiyn], and∀n≥0, whereTi:C↦His a nonselfki-strictly pseudocontraction. Under certain approximate conditions, the sequence{xn}converges strongly tox*∈⋂i=1∞F(Ti), which solves some variational inequality. The results here improve and extend some recent results.


Sign in / Sign up

Export Citation Format

Share Document