scholarly journals Personality-Based Active Learning for Collaborative Filtering Recommender Systems

Author(s):  
Mehdi Elahi ◽  
Matthias Braunhofer ◽  
Francesco Ricci ◽  
Marko Tkalcic
Author(s):  
Ferdaous Hdioud ◽  
Bouchra Frikh ◽  
Brahim Ouhbi ◽  
Ismail Khalil

A Recommender System (RS) works much better for users when it has more information. In Collaborative Filtering, where users' preferences are expressed as ratings, the more ratings elicited, the more accurate the recommendations. New users present a big challenge for a RS, which has to providing content fitting their preferences. Generally speaking, such problems are tackled by applying Active Learning (AL) strategies that consist on a brief interview with the new user, during which she is asked to give feedback about a set selected items. This article presents a comprehensive study of the most important techniques used to handle this issue focusing on AL techniques. The authors then propose a novel item selection approach, based on Multi-Criteria ratings and a method of computing weights of criteria inspired by a multi-criteria decision making approach. This selection method is deployed to learn new users' profiles, to identify the reasons behind which items are deemed to be relevant compared to the rest items in the dataset.


2016 ◽  
Vol 20 ◽  
pp. 29-50 ◽  
Author(s):  
Mehdi Elahi ◽  
Francesco Ricci ◽  
Neil Rubens

2020 ◽  
Vol 10 (4) ◽  
pp. 1257 ◽  
Author(s):  
Liang Zhang ◽  
Quanshen Wei ◽  
Lei Zhang ◽  
Baojiao Wang ◽  
Wen-Hsien Ho

Conventional recommender systems are designed to achieve high prediction accuracy by recommending items expected to be the most relevant and interesting to users. Therefore, they tend to recommend only the most popular items. Studies agree that diversity of recommendations is as important as accuracy because it improves the customer experience by reducing monotony. However, increasing diversity reduces accuracy. Thus, a recommendation algorithm is needed to recommend less popular items while maintaining acceptable accuracy. This work proposes a two-stage collaborative filtering optimization mechanism that obtains a complete and diversified item list. The first stage of the model incorporates multiple interests to optimize neighbor selection. In addition to using conventional collaborative filtering to predict ratings by exploiting available ratings, the proposed model further considers the social relationships of the user. A novel ranking strategy is then used to rearrange the list of top-N items while maintaining accuracy by (1) rearranging the area controlled by the threshold and by (2) maximizing popularity while maintaining an acceptable reduction in accuracy. An extensive experimental evaluation performed in a real-world dataset confirmed that, for a given loss of accuracy, the proposed model achieves higher diversity compared to conventional approaches.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 41782-41798 ◽  
Author(s):  
Santiago Alonso ◽  
Jesus Bobadilla ◽  
Fernando Ortega ◽  
Ricardo Moya

2013 ◽  
Vol 756-759 ◽  
pp. 3899-3903
Author(s):  
Ping Sun ◽  
Zheng Yu Li ◽  
Zi Yang Han ◽  
Feng Ying Wang

Recommendation algorithm is the most core and key point in recommender systems, and plays a decisive role in type and performance evaluation. At present collaborative filtering recommendation not only is the most widely useful and successful recommend technology, but also is a promotion for the study of the whole recommender systems. The research on the recommender systems is coming into a focus and critical problem at home and abroad. Firstly, the latest development and research in the collaborative filtering recommendation algorithm are introduced. Secondly, the primary idea and difficulties faced with the algorithm are explained in detail. Some classical solutions are used to deal with the problems such as data sparseness, cold start and augmentability. Thirdly, the particular evaluation method of the algorithm is put forward and the developments of collaborative filtering algorithm are prospected.


Sign in / Sign up

Export Citation Format

Share Document