decisive role
Recently Published Documents


TOTAL DOCUMENTS

2506
(FIVE YEARS 1262)

H-INDEX

49
(FIVE YEARS 9)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 157
Author(s):  
Timothy Ngeru ◽  
Dzhem Kurtulan ◽  
Ahmet Karkar ◽  
Stefanie Hanke

multiaxial stress states frequently occur in technical components and, due to the multitude of possible load situations and variations in behaviour of different materials, are to date not fully predictable. This is particularly the case when loads lie in the plastic range, when strain accumulation, hardening and softening play a decisive role for the material reaction. This study therefore aims at adding to the understanding of material behaviour under complex load conditions. Fatigue tests conducted under cyclic torsional angles (5°, 7.5°, 10° and 15°), with superimposed axial static compression loads (250 MPa and 350 MPa), were carried out using smooth specimens at room temperature. A high nitrogen alloyed austenitic stainless steel (nickel free), was employed to determine not only the number of cycles to failure but particularly to aid in the understanding of the mechanical material reaction to the multiaxial stresses as well as modes of crack formation and growth. Experimental test results indicate that strain hardening occurs under the compressive strain, while at the same time cyclic softening is observable in the torsional shear stresses. Furthermore, the cracks’ nature is unusual with multiple branching and presence of cracks perpendicular in direction to the surface cracks, indicative of the varying multiaxial stress states across the samples’ cross section as cross slip is activated in different directions. In addition, it is believed that the static compressive stress facilitated the Stage I (mode II) crack to change direction from the axial direction to a plane perpendicular to the specimen’s axis.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Mohammad Zare ◽  
Shahid Azam ◽  
David Sauchyn

Soil water content (SWC) is one of the most important hydrologic variables; it plays a decisive role in the control of various land surface processes. We simulated SWC using a Soil and Water Assessment Tool (SWAT) model in southern Saskatchewan. SWC was calibrated using measured data and Soil Moisture Active Passive (SMAP) Level-4 for the surface (0–5 cm) SWC for hydrological response units (HRU) at daily and monthly (warm season) intervals for the years 2015 to 2020. We used the SUFI-2 technique in SWAT-CUP, and observed daily instrumented streamflow records, for calibration (1995 to 2004) and validation (2005–2010). The results reveal that the SWAT model performs well with a monthly PBIAS < 10% and Nash–Sutcliffe efficiency (NS) and R2 ≥ 0.8 for calibration and validation. The correlation coefficient between ground measurement with SMAP and SWAT products are 0.698 and 0.633, respectively. Moreover, SMAP data of surface SWC coincides well with measurements in terms of both amount and trend compared with the SWAT product. The highest r value occurred in July when the mean r value in SWAT and SMAP were 0.87 to 0.84, and then in June for r value of 0.75. In contrast, the lowest values were in April and May (0.07 and 0.04, respectively) at the beginning of the growing season in southern Saskatchewan. Furthermore, calibration in the SWAT model is based on a batch form whereby parameters are adjusted to corresponding input by modifying simulations with observations. SWAT underestimates the abrupt increase in streamflow during the snowmelt months (April and May). This study achieved the objective of developing a SWAT model that simulates SWC in a prairie watershed, and, therefore, can be used in a subsequent phase of research to estimate future soil moisture conditions under projected climate changes.


2022 ◽  
Author(s):  
Brock Lumbers ◽  
David W. Agar ◽  
Joachim Gebel ◽  
Frank Platte

The demand for low-emission hydrogen is set to grow as the world transitions to a future hydrogen economy. Unlike current methods of hydrogen production, which largely derive from fossil fuels with unabated emissions, the thermo-catalytic methane decomposition (TCMD) process is a promising intermediate solution that generates no direct carbon dioxide emissions and can bridge the transition to green hydrogen whilst utilising existing gas infrastructure. This process is yet to see widespread adoption, however, due to the high catalyst turnover costs resulting from the inevitable deactivation of the catalyst, which plays a decisive role in the feasibility of the process. In this study, a feasible TCMD process was identified and a simplified mathematical model was developed, which provides a dynamic estimation for the hydrogen production rate and catalyst turnover costs over various process conditions. The work consisted of a parametric study as well as an investigation into the different process modes. Based on the numerous simulation results it was possible to find the optimal process parameters that maximise the hydrogen pro- duction rate and minimise the catalyst turnover costs, therefore increasing the economic potential of the process and hence its commercial viability.


2022 ◽  
Author(s):  
Jasjot Singh ◽  
Hadeer Elhabashy ◽  
Pathma Muthukottiappan ◽  
Markus Stepath ◽  
Martin Eisenacher ◽  
...  

Lysosomes are well-established as the main cellular organelles for the degradation of macromolecules and emerging as regulatory centers of metabolism. They are of crucial importance for cellular homeostasis, which is exemplified by a plethora of disorders related to alterations in lysosomal function. In this context, protein complexes play a decisive role, regulating not only metabolic lysosomal processes, but also lysosome biogenesis, transport, and interaction with other organelles. Using cross-linking mass spectrometry, we analyzed lysosomes and early endosomes. Based on the identification of 5,376 cross-links, we investigated protein-protein interactions and structures of lysosome- and endosome-related proteins. In particular, we present evidence for a tetrameric assembly of the lysosomal hydrolase PPT1 and heterodimeric/-multimeric structures of FLOT1/FLOT2 at lysosomes and early endosomes. For FLOT1-/FLOT2-positive early endosomes, we identified >300 proteins presenting putative cargo, and confirm the latrophilin family of adhesion G protein-coupled receptors as substrates for flotillin-dependent endocytosis.


2022 ◽  
Author(s):  
Mikhail G Akimov ◽  
Natalia M Gretskaya ◽  
Polina V Dudina ◽  
Galina Sherstyanykh ◽  
Galina N Zinchenko ◽  
...  

The objective of the project is to establish the mechanisms of multidirectional signal transmission through the same G-protein coupled receptor GPR55. Using the CRISPR-Cas9 system, clones of the MDA-MB-231 line knockout for the GPR55 (3 clones) and CB2 (CNR2 - 6 clones) receptor genes were obtained. On clones of the MDA-MB-231 line with a knockout CB2 receptor, the cytotoxic activity of the pro-apoptotic ligand docosahexaenoyldopamine (DHA-DA) did not change or slightly increased, while the pro-proliferative activity of the most active synthetic ligand of the GPR55 receptor (ML-184) completely disappeared. On the original line MDA-MB-231, the stimulatory effect of ML-184 is removed by the CB2 receptor blocker, but not by GPR55. At the same time, the stimulating effect of ML-184 is practically not manifested on cell lines knockout at the GPR55 receptor. Thus, it can be confidently assumed that when proliferation is stimulated with the participation of the GPR55 receptor, a signal is transmitted from the CB2 receptor to the GPR55 receptor due to the formation of a heterodimer. GPR18 and TRPV1 receptors are additionally involved in the implementation of the cytotoxic effect of DHA-DA, while the CB1 receptor is not involved. In the implementation of the cytotoxic action of DHA-DA, the predominant participation of one of the Ga subunits was not found, but the Ga13 subunit plays a decisive role in the implementation of the proproliferative action. The Gaq subunit is also important, although to a lesser extent than Ga13.


2022 ◽  
Author(s):  
Ashim Nandi ◽  
Gershom (Jan M.L.) Martin

Recent quantum chemical computations demonstrated the electron-acceptance behavior of this highly reactive cyclo[18]carbon (C18) ring with piperidine (pip). The C18–pip complexation exhibited a double-well potential along the N–C reaction coordinate, forming a van der Waals (vdW) adduct and a more stable, strong covalent/dative bond (DB) complex by overcoming a low activation barrier. By means of direct dynamical computations using canonical variational transition state theory (CVT), including the small-curvature tunneling (SCT), we show the conspicuous role of heavy atom quantum mechanical tunneling (QMT) in the transformation of vdW to DB complex in the solvent phase near absolute zero. Below 50 K, the reaction is entirely driven by QMT, while at 30 K, the QMT rate is too rapid (kT ~ 0.02 s-1), corresponding to a half-life time of 38 s, indicating that the vdW adduct will have a fleeting existence. We also explored the QMT rates of other cyclo[n]carbon–pip systems. This study sheds light on the decisive role of QMT in the covalent/DB formation of the C18–pip complex at cryogenic temperatures.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Martha Schulz ◽  
Mareen Schäfer ◽  
Kay Saalwächter ◽  
Thomas Thurn-Albrecht

AbstractThe non-equilibrium thickness of lamellar crystals in semicrystalline polymers varies significantly between different polymer systems and depends on the crystallization temperature Tc. There is currently no consensus on the mechanism of thickness selection. Previous work has highlighted the decisive role of intracrystalline chain diffusion (ICD) in special cases, but a systematic dependence of lamellar thickness on relevant timescales such as that of ICD and stem attachment has not yet been established. Studying the morphology by small-angle X-ray scattering and the two timescales by NMR methods and polarization microscopy respectively, we here present data on poly(oxymethylene), a case with relatively slow ICD. It fills the gap between previously studied cases of absent and fast ICD, enabling us to establish a quantitative dependence of lamellar thickness on the competition between the noted timescales.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 206
Author(s):  
Agnieszka U. Błachnio-Zabielska ◽  
Kamila Roszczyc-Owsiejczuk ◽  
Monika Imierska ◽  
Karolina Pogodzińska ◽  
Paweł Rogalski ◽  
...  

Skeletal muscle is perceived as a major tissue in glucose and lipid metabolism. High fat diet (HFD) lead to the accumulation of intramuscular lipids, including: long chain acyl-CoA, diacylglycerols, and ceramides. Ceramides are considered to be one of the most important lipid groups in the generation of skeletal muscle insulin resistance. So far, it has not been clearly established whether all ceramides adversely affect the functioning of the insulin pathway, or whether there are certain ceramide species that play a pivotal role in the induction of insulin resistance. Therefore, we designed a study in which the expression of CerS1 and CerS5 genes responsible for the synthesis of C18:0-Cer and C16:0-Cer, respectively, was locally silenced in the gastrocnemius muscle of HFD-fed mice through in vivo electroporation-mediated shRNA plasmids. Our study indicates that HFD feeding induced both, the systemic and skeletal muscle insulin resistance, which was accompanied by an increase in the intramuscular lipid levels, decreased activation of the insulin pathway and, consequently, a decrease in the skeletal muscle glucose uptake. CerS1 silencing leads to a reduction in C18:0-Cer content, with a subsequent increase in the activity of the insulin pathway, and an improvement in skeletal muscle glucose uptake. Such effects were not visible in case of CerS5 silencing, which indicates that the accumulation of C18:0-Cer plays a decisive role in the induction of skeletal muscle insulin resistance.


Urban History ◽  
2022 ◽  
pp. 1-18
Author(s):  
Sarah Thieme

Abstract By analysing the Church of England's 1985 report Faith in the City (FITC), this article demonstrates that the church played a decisive role in shaping the discourse on British ‘inner cities’. Following a brief historical contextualization, the article examines the FITC report itself, how it came about and what arguments the Church of England introduced into the national debate on inner cities, as well as the media and political discussion that followed its publication and the reactions in the religious field. The article argues that the publication was a turning point in the inner cities discourse of the 1980s. It examines how the church succeeded in (re)directing national attention to the topic thereby countering the territorial stigmatization and replacing it with a more positive view focused on the potential of the residents living in the inner cities.


Sign in / Sign up

Export Citation Format

Share Document