High Density Lipoproteins and Ischemia Reperfusion Injury: The Therapeutic Potential of HDL to Modulate Cell Survival Pathways

Author(s):  
Richard W. James ◽  
Miguel A. Frias
2004 ◽  
Vol 5 (1) ◽  
pp. 38
Author(s):  
L. Calabresi ◽  
G. Rossoni ◽  
M. Gomaraschi ◽  
C. Sirtori ◽  
G. Franceschini

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3592
Author(s):  
Aneta Ostróżka-Cieślik ◽  
Barbara Dolińska ◽  
Florian Ryszka

Selenium has strong antioxidant properties and diverse effects on the immune system. The aim of the study was to analyse the protective effect of selenium as a component of a kidney preservation solution on the prevention of ischemia-reperfusion injury of nephrons. The solution was modified by the addition of Se (1 µg/L), prolactin (0.1 µg/L) and Se with prolactin (1 µg/L Se + 0.1 µg/L PRL). The study used a model for storing isolated porcine kidneys in Biolasol® (modified Biolasol®), which minimizes ischemia-reperfusion injury of grafts. The introduction of Se4+ ions at a dose of 1 µg/L into the Biolasol® preservation solution in the form of Na2SeO3 caused an increase in the activity/concentration of the analysed biochemical parameters: aspartate transaminase, alanine transaminase, urea and protein. This suggests an adverse effect of Se4+ on nephron function during ischemia-reperfusion. The best graft protection was obtained by using Biolasol® modified with the addition of selenium (IV) at a dose of 1 µg/L and prolactin at a concentration of 0.1 µg/L. We proposed the mechanism of prolactin action in the metabolic reduction of selenite (SO32−) during ischemia/reperfusion.


Sign in / Sign up

Export Citation Format

Share Document