Cell Survival
Recently Published Documents





Science ◽  
2021 ◽  
Vol 374 (6572) ◽  
pp. 1252-1258
Haitao Sun ◽  
Zhaoning Lu ◽  
Amanpreet Singh ◽  
Yajing Zhou ◽  
Eric Zheng ◽  

S. Prosén ◽  
E. Tina ◽  
A.H. Sneckenborg ◽  
C. Loinder ◽  
O. Seifert ◽  

2021 ◽  
Francesco G. Cordoni ◽  
Marta Missiaggia ◽  
Emanuele Scifoni ◽  
Chiara La Tessa

The current article presents the first application of the Generalized Stochastic Microdosimetric Model (GSM2) for computing explicitly a cell survival curve. GSM2 is a general probabilistic model that predicts the kinetic evolution of DNA damages taking full advantage of a microdosimetric description of a radiation energy deposition. We show that, despite the high generality and flexibility of GSM2, an explicit form for the survival fraction curve predicted by the GSM2 is achievable. We illustrate how several correction terms typically added a posteriori in existing radiobiological models to improve the prediction accuracy, are naturally included into GSM2. Among the most relevant features of the survival curve derived from GSM2 and presented in this article, is the linear-quadratic behavior at low doses and a purely linear trend for high doses. The study also identifies and discusses the connections between GSM2 and existing cell survival models, such as the Microdosimetric Kinetic Model (MKM) and the Multi-hit model. Several approximations to predict cell survival in different irradiation regimes are also introduced to include intercellular non-Poissonian behaviors.

Ana Coto-Montes ◽  
Laura González-Blanco ◽  
Eduardo Antuña ◽  
Iván Menéndez-Valle ◽  
Juan Carlos Bermejo-Millo ◽  

Biomarkers are essential tools for accurate diagnosis and effective prevention, but their validation is a pending challenge that limits their usefulness, even more so with constructs as complex as frailty. Sarcopenia shares multiple mechanisms with frailty which makes it a strong candidate to provide robust frailty biomarkers. Based on this premise, we studied the temporal evolution of cellular interactome in frailty, from independent patients to dependent ones. Overweight is a recognized cause of frailty in aging, so we studied the altered mechanisms in overweight independent elderly and evaluated their aggravation in dependent elderly. This evidence of the evolution of previously altered mechanisms would significantly support their role as real biomarkers of frailty. The results showed a preponderant role of autophagy in interactome control at both different functional points, modulating other essential mechanisms in the cell, such as mitochondrial capacity or oxidative stress. Thus, the overweight provoked in the muscle of the elderly an overload of autophagy that kept cell survival in apparently healthy individuals. This excessive and permanent autophagic effort did not seem to be able to be maintained over time. Indeed, in dependent elderly, the muscle showed a total autophagic inactivity, with devastating effects on the survival of the cell, which showed clear signs of apoptosis, and reduced functional capacity. The frail elderly are in a situation of weakness that is a precursor of dependence that can still be prevented if detection is early. Hence biomarkers are essential in this context.

2021 ◽  
Imadeddin Hijazi ◽  
Emily Wang ◽  
Michelle Orozco ◽  
Sarah Pelton ◽  
Amy Chang

Endoplasmic reticulum stress (ERS) occurs when cellular demand for protein folding exceeds the capacity of the organelle. Adaptation and cell survival in response to ERS requires a critical contribution by mitochondria and peroxisomes. During ERS response, mitochondrial respiration increases to ameliorate reactive oxygen species (ROS) accumulation; we now show in yeast that peroxisome abundance also increases to promote an adaptive response. In pox1▵ cells, defective in peroxisomal ß oxidation of fatty acids, respiratory response to ERS is impaired, and ROS accrues. However, respiratory response to ERS is rescued, and ROS production is mitigated in pox1▵ cells by overexpression of Mpc1, the mitochondrial pyruvate carrier that provides another source of acetyl CoA to fuel the TCA cycle and oxidative phosphorylation. Using proteomics, select mitochondrial proteins were identified that undergo upregulation by ERS to remodel respiratory machinery. Several peroxisome-based proteins were also increased, corroborating the peroxisomal role in ERS adaptation. Finally, ERS stimulates assembly of respiratory complexes into higher order supercomplexes, underlying increased electron transfer efficiency. Our results highlight peroxisomal and mitochondrial support for ERS adaptation to favor cell survival.

Saswati Biswas ◽  
Hemendra Pal Singh Dhaked ◽  
Andrew Keightley ◽  
Indranil Biswas

When bacteria encounter environmental stresses, the expression of various proteins collectively known as heat shock proteins is induced. These heat shock proteins are necessary for cell survival specifically under conditions that induce protein denaturation.

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2402
Sarah N. Croft ◽  
Erin J. Walker ◽  
Reena Ghildyal

Rhinoviruses (RV), like many other viruses, modulate programmed cell death to their own advantage. The viral protease, 3C has an integral role in the modulation, and we have shown that RVA-16 3C protease cleaves Receptor-interacting protein kinase-1 (RIPK1), a key host factor that modulates various cell death and cell survival pathways. In the current study, we have investigated whether this cleavage is conserved across selected RV strains. RIPK1 was cleaved in cells infected with strains representing diversity across phylogenetic groups (A and B) and receptor usage (major and minor groups). The cleavage was abrogated in the presence of the specific 3C protease inhibitor, Rupintrivir. Interestingly, there appears to be involvement of another protease (maybe 2A protease) in RIPK1 cleavage in strains belonging to genotype B. Our data show that 3C protease from diverse RV strains cleaves RIPK1, highlighting the importance of the cleavage to the RV lifecycle.

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6042
Jelena Milosevic ◽  
Diana Treis ◽  
Susanne Fransson ◽  
Gabriel Gallo-Oller ◽  
Baldur Sveinbjörnsson ◽  

Childhood medulloblastoma and high-risk neuroblastoma frequently present with segmental gain of chromosome 17q corresponding to aggressive tumors and poor patient prognosis. Located within the 17q-gained chromosomal segments is PPM1D at chromosome 17q23.2. PPM1D encodes a serine/threonine phosphatase, WIP1, that is a negative regulator of p53 activity as well as key proteins involved in cell cycle control, DNA repair and apoptosis. Here, we show that the level of PPM1D expression correlates with chromosome 17q gain in medulloblastoma and neuroblastoma cells, and both medulloblastoma and neuroblastoma cells are highly dependent on PPM1D expression for survival. Comparison of different inhibitors of WIP1 showed that SL-176 was the most potent compound inhibiting medulloblastoma and neuroblastoma growth and had similar or more potent effects on cell survival than the MDM2 inhibitor Nutlin-3 or the p53 activator RITA. SL-176 monotherapy significantly suppressed the growth of established medulloblastoma and neuroblastoma xenografts in nude mice. These results suggest that the development of clinically applicable compounds inhibiting the activity of WIP1 is of importance since PPM1D activating mutations, genetic gain or amplifications and/or overexpression of WIP1 are frequently detected in several different cancers.

2021 ◽  
Vol 41 (12) ◽  
pp. 5959-5971

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 821
Tobias Kammann ◽  
Jessica Hoff ◽  
Ilknur Yildirim ◽  
Blerina Shkodra ◽  
Tina Müller ◽  

Cholesterol is highly abundant within all human body cells and modulates critical cellular functions related to cellular plasticity, metabolism, and survival. The cholesterol-binding toxin pneumolysin represents an essential virulence factor of Streptococcus pneumoniae in establishing pneumonia and other pneumococcal infections. Thus, cholesterol scavenging of pneumolysin is a promising strategy to reduce S. pneumoniae induced lung damage. There may also be a second cholesterol-dependent mechanism whereby pneumococcal infection and the presence of pneumolysin increase hepatic sterol biosynthesis. Here we investigated a library of polymer particles varying in size and composition that allow for the cellular delivery of cholesterol and their effects on cell survival mechanisms following pneumolysin exposure. Intracellular delivery of cholesterol by nanocarriers composed of Eudragit E100–PLGA rescued pneumolysin-induced alterations of lipid homeostasis and enhanced cell survival irrespective of neutralization of pneumolysin.

Sign in / Sign up

Export Citation Format

Share Document