Neural Networks with Online Sequential Learning Ability for a Reinforcement Learning Algorithm

Author(s):  
Hitesh Shah ◽  
Madan Gopal
2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Zhicong Zhang ◽  
Shuai Li ◽  
Xiaohui Yan

We study an online multisource multisink queueing network control problem characterized with self-organizing network structure and self-organizing job routing. We decompose the self-organizing queueing network control problem into a series of interrelated Markov Decision Processes and construct a control decision model for them based on the coupled reinforcement learning (RL) architecture. To maximize the mean time averaged weighted throughput of the jobs through the network, we propose a reinforcement learning algorithm with time averaged reward to deal with the control decision model and obtain a control policy integrating the jobs routing selection strategy and the jobs sequencing strategy. Computational experiments verify the learning ability and the effectiveness of the proposed reinforcement learning algorithm applied in the investigated self-organizing network control problem.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
Jai Hoon Park ◽  
Kang Hoon Lee

Designing novel robots that can cope with a specific task is a challenging problem because of the enormous design space that involves both morphological structures and control mechanisms. To this end, we present a computational method for automating the design of modular robots. Our method employs a genetic algorithm to evolve robotic structures as an outer optimization, and it applies a reinforcement learning algorithm to each candidate structure to train its behavior and evaluate its potential learning ability as an inner optimization. The size of the design space is reduced significantly by evolving only the robotic structure and by performing behavioral optimization using a separate training algorithm compared to that when both the structure and behavior are evolved simultaneously. Mutual dependence between evolution and learning is achieved by regarding the mean cumulative rewards of a candidate structure in the reinforcement learning as its fitness in the genetic algorithm. Therefore, our method searches for prospective robotic structures that can potentially lead to near-optimal behaviors if trained sufficiently. We demonstrate the usefulness of our method through several effective design results that were automatically generated in the process of experimenting with actual modular robotics kit.


Sign in / Sign up

Export Citation Format

Share Document