Cache-Aware Query Processing with User Privacy Protection in Location-Based Services

Author(s):  
Zhengang Wu ◽  
Liangwen Yu ◽  
Huiping Sun ◽  
Zhi Guan ◽  
Zhong Chen
2016 ◽  
pp. 1693-1717
Author(s):  
Wen-Chen Hu ◽  
Naima Kaabouch ◽  
Hung-Jen Yang ◽  
S. Hossein Mousavinezhad

Since the introduction of iPhone in 2007, smartphones have become very popular (e.g., the number of worldwide smartphone sales has surpassed the number of PC sales in 2011). The feature of high mobility and small size of smartphones has created many applications that are not possible or inconvenient for PCs and servers, even laptops. Location-based services (LBS), one of mobile applications, have attracted a great attention recently. This research proposes a location-based service, which predicts a spatial trajectory based on the current and previous trajectories by using a novel matrix representation. Spatial trajectory prediction can be used in a variety of purposes such as travel recommendations and traffic control and planning, but at the same time, just like most location-based services, the user privacy concern is a major issue. Without rigorous privacy protection, users would be reluctant to use the service. The proposed method is simple but effective and user privacy is rigorously preserved at the same time because the trajectory prediction is performed at the user-side. Additionally, this research is not only useful but also pedagogical because it involves a variety of topics like (i) mobile computing, (ii) mobile security, and (iii) human behavior recognition.


Author(s):  
Anh Tuan Truong

The development of location-based services and mobile devices has lead to an increase in the location data. Through the data mining process, some valuable information can be discovered from location data. In the other words, an attacker may also extract some private (sensitive) information of the user and this may make threats against the user privacy. Therefore, location privacy protection becomes an important requirement to the success in the development of location-based services. In this paper, we propose a grid-based approach as well as an algorithm to guarantee k-anonymity, a well-known privacy protection approach, in a location database. The proposed approach considers only the information that has significance for the data mining process while ignoring the un-related information. The experiment results show the effectiveness of the proposed approach in comparison with the literature ones.


2018 ◽  
Vol 173 ◽  
pp. 03048 ◽  
Author(s):  
Jianjun Wen ◽  
Zhao Li

With the widespread application of location-based services, users 'privacy concerns have become the focus of users' attention. Based on the k-anonymity method and the SpaceTwist algorithm, this paper proposes a method of incremental inquiry user privacy protection. The method preliminarily anonymizes the user's location information and points of interest on the client side, On the anonymous server side, combining the road network environment with the latitude and longitude grid generates the minimum anonymous area of random loop, instead of the user initiating incremental inquiry to the location service provider, Anonymous zones ensure k-anonymity for mobile users and road information to protect user privacy. Security and experimental analysis show that this scheme can improve the effectiveness of user query service while meeting the privacy requirements of users.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jinying Jia ◽  
Fengli Zhang

This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user’s accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user’s accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed forK-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.


Sign in / Sign up

Export Citation Format

Share Document