scholarly journals Privacy Preserving Spatio-Temporal Databases Based on k-Anonymity

Author(s):  
Anh Tuan Truong

The development of location-based services and mobile devices has lead to an increase in the location data. Through the data mining process, some valuable information can be discovered from location data. In the other words, an attacker may also extract some private (sensitive) information of the user and this may make threats against the user privacy. Therefore, location privacy protection becomes an important requirement to the success in the development of location-based services. In this paper, we propose a grid-based approach as well as an algorithm to guarantee k-anonymity, a well-known privacy protection approach, in a location database. The proposed approach considers only the information that has significance for the data mining process while ignoring the un-related information. The experiment results show the effectiveness of the proposed approach in comparison with the literature ones.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jinying Jia ◽  
Fengli Zhang

This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user’s accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user’s accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed forK-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3519 ◽  
Author(s):  
Ying Qiu ◽  
Yi Liu ◽  
Xuan Li ◽  
Jiahui Chen

Location-based services (LBS) bring convenience to people’s lives but are also accompanied with privacy leakages. To protect the privacy of LBS users, many location privacy protection algorithms were proposed. However, these algorithms often have difficulty to maintain a balance between service quality and user privacy. In this paper, we first overview the shortcomings of the existing two privacy protection architectures and privacy protection technologies, then we propose a location privacy protection method based on blockchain. Our method satisfies the principle of k-anonymity privacy protection and does not need the help of trusted third-party anonymizing servers. The combination of multiple private blockchains can disperse the user’s transaction records, which can provide users with stronger location privacy protection and will not reduce the quality of service. We also propose a reward mechanism to encourage user participation. Finally, we implement our approach in the Remix blockchain to show the efficiency, which further indicates the potential application prospect for the distributed network environment.


2019 ◽  
Vol 15 (3) ◽  
pp. 155014771983056 ◽  
Author(s):  
Hang Ye ◽  
Kai Han ◽  
Chaoting Xu ◽  
Jingxin Xu ◽  
Fei Gui

Spatial crowdsourcing is an emerging outsourcing platform that allocates spatio-temporal tasks to a set of workers. Then, the worker moves to the specified locations to perform the tasks. However, it usually demands workers to upload their location information to the spatial crowdsourcing server, which unavoidably attracts attention to the privacy-preserving of the workers’ locations. In this article, we propose a novel framework that can protect the location privacy of the workers and the requesters when assigning tasks to workers. Our scheme is based on mathematical transformation to the location while providing privacy protection to workers and requesters. Moreover, to further preserve the relative location between workers, we generate a certain amount of noise to interfere the spatial crowdsourcing server. Experimental results on real-world data sets show the effectiveness and efficiency of our proposed framework.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 121
Author(s):  
Mulugeta Kassaw Tefera ◽  
Xiaolong Yang

The wide-ranging application of location-based services (LBSs) through the use of mobile devices and wireless networks has brought about many critical privacy challenges. To preserve the location privacy of users, most existing location privacy-preserving mechanisms (LPPMs) modify their real locations associated with different pseudonyms, which come at a cost either in terms of resource consumption or quality of service, or both. However, we observed that the effect of resource consumption has not been discussed in existing studies. In this paper, we present the user-centric LPPMs against location inference attacks under the consideration of both service quality and energy constraints. Moreover, we modeled the precision-based and dummy-based mechanisms in the context of an existing LPPM framework, and also extended the linear program solutions applicable to them. This study allowed us to specify the LPPMs that decreased the precision of exposed locations or generated dummy locations of the users. Based on this, we evaluated the privacy protection effects of optimal location obfuscation function against an adversary's inference attack function using real mobility datasets. The results indicate that dummy-based mechanisms provide better achievable location privacy under a given combination of service quality and energy constraints, and once a certain level of privacy is reached, both the precision-based and dummy-based mechanisms only perturb the exposed locations. The evaluation results also contribute to a better understanding for the LPPM design strategies and evaluation mechanism as far as the system resource utilization and service quality requirements are concerned.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Madhuri Siddula ◽  
Yingshu Li ◽  
Xiuzhen Cheng ◽  
Zhi Tian ◽  
Zhipeng Cai

While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hongtao Li ◽  
Xingsi Xue ◽  
Zhiying Li ◽  
Long Li ◽  
Jinbo Xiong

The widespread use of Internet of Things (IoT) technology has promoted location-based service (LBS) applications. Users can enjoy various conveniences brought by LBS by providing location information to LBS. However, it also brings potential privacy threats to location information. Location data that contains private information is often transmitted among IoT networks in LBS, and such privacy information should be protected. In order to solve the problem of location privacy leakage in LBS, a location privacy protection scheme based on k -anonymity is proposed in this paper, in which the Geohash coding model and Voronoi graph are used as grid division principles. We adopt the client-server-to-user (CS2U) model to protect the user’s location data on the client side and the server side, respectively. On the client side, the Geohash algorithm is proposed, which converts the user’s location coordinates into a Geohash code of the corresponding length. On the server side, the Geohash code generated by the user is inserted into the prefix tree, the prefix tree is used to find the nearest neighbors according to the characteristics of the coded similar prefixes, and the Voronoi diagram is used to divide the area units to complete the pruning. Then, using the Geohash coding model and the Voronoi diagram grid division principle, the G-V anonymity algorithm is proposed to find k neighbors in an anonymous area so that the user’s location data meets the k -anonymity requirement in the area unit, thereby achieving anonymity protection of location privacy. Theoretical analysis and experimental results show that our method is effective in terms of privacy and data quality while reducing the time of data anonymity.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jin Wang ◽  
Hao Wu ◽  
Yudian Liu

With the development of mobile communication networks and intelligent terminals, recent years have witnessed a rapid popularization of location-based service (LBS). While obtaining convenient services, the exploitation of mass location data is inevitably leading to a serious concern about location privacy security. Obviously, high quality of service (QoS) will result in poor location privacy protection, so that a trade-off is needed to fulfill users’ individual demands for both sides. Although existing methods perform well in certain scenarios, few have considered the abovementioned balance problem. Therefore, by combiningk-anonymity-based cloaking technique and obfuscation method, a new distributed user-demand-driven (DUDD) location privacy protection scheme is put forward in this paper. The basic idea is still to select a subcloaking area within the cloaking area generated by Location Anonymization Server. Moreover, by using the improved LBS system model, this paper constructs a distributed framework, in which location privacy protection is wholly occupied in server side and LBS provider is only dedicated to QoS-guarantee. In addition, normalized privacy demand and QoS metrics are given and a user-defined weight parameter is introduced to ensure location privacy security without decreasing QoS. The feasibility of the proposed method is proved through simulation.


2020 ◽  
Vol 9 (10) ◽  
pp. 1633-1637
Author(s):  
Chuan Xu ◽  
Li Luo ◽  
Yingyi Ding ◽  
Guofeng Zhao ◽  
Shui Yu

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771984149
Author(s):  
Ji-ming Chen ◽  
Ting-ting Li ◽  
Liang-jun Wang

Location-based services has been widely applied in cloud-enabled Internet of vehicles. Within these services, location privacy issues have captured significant attention. Vehicles use the technology of anonymity to implement occultation, the location is not revealed. In this process, large-scale data transmissions can reduce the quality of services. In order to ensure location privacy and high-quality services, the cloud manager customizes virtual machines for vehicles to support location-based services according to the vehicles’ demands. To achieve better performance, this article presents a conditional anonymity method that does not use bilinear pairings to address the problem of privacy disclosure by using discrete logarithm problem and Diffie–Hellman problem. Moreover, asymmetric key algorithms are used in the Internet of vehicles environment to reduce the cost. To guarantee secure data transmission in Internet of vehicles, the batch validation technique is used to address data integrity. Our theoretical security analysis and experiments show that the proposed scheme is secure in compared attack models, such as impersonation attacks, replay attacks, the man-in-the-middle attacks, and so on. Our proposed scheme ensures the security requirements such as message authentication, location privacy protection, and traceability, while lowering transmission and computation cost.


Sign in / Sign up

Export Citation Format

Share Document