Partial Refinement for Similarity Search with Multiple Features

Author(s):  
Marcel Zierenberg

1998 ◽  
Vol 14 (3) ◽  
pp. 202-210 ◽  
Author(s):  
Suzanne Skiffington ◽  
Ephrem Fernandez ◽  
Ken McFarland

This study extends previous attempts to assess emotion with single adjective descriptors, by examining semantic as well as cognitive, motivational, and intensity features of emotions. The focus was on seven negative emotions common to several emotion typologies: anger, fear, sadness, shame, pity, jealousy, and contempt. For each of these emotions, seven items were generated corresponding to cognitive appraisal about the self, cognitive appraisal about the environment, action tendency, action fantasy, synonym, antonym, and intensity range of the emotion, respectively. A pilot study established that 48 of the 49 items were linked predominantly to the specific emotions as predicted. The main data set comprising 700 subjects' ratings of relatedness between items and emotions was subjected to a series of factor analyses, which revealed that 44 of the 49 items loaded on the emotion constructs as predicted. A final factor analysis of these items uncovered seven factors accounting for 39% of the variance. These emergent factors corresponded to the hypothesized emotion constructs, with the exception of anger and fear, which were somewhat confounded. These findings lay the groundwork for the construction of an instrument to assess emotions multicomponentially.



2009 ◽  
Vol 20 (10) ◽  
pp. 2867-2884 ◽  
Author(s):  
Feng WU ◽  
Yan ZHONG ◽  
Quan-Yuan WU ◽  
Yan JIA ◽  
Shu-Qiang YANG


2009 ◽  
Vol 28 (10) ◽  
pp. 2721-2721 ◽  
Author(s):  
Ai-guo LI ◽  
Hua ZHAO


2020 ◽  
Vol 16 (4) ◽  
pp. 473-485
Author(s):  
David Mary Rajathei ◽  
Subbiah Parthasarathy ◽  
Samuel Selvaraj

Background: Coronary heart disease generally occurs due to cholesterol accumulation in the walls of the heart arteries. Statins are the most widely used drugs which work by inhibiting the active site of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme that is responsible for cholesterol synthesis. A series of atorvastatin analogs with HMGCR inhibition activity have been synthesized experimentally which would be expensive and time-consuming. Methods: In the present study, we employed both the QSAR model and chemical similarity search for identifying novel HMGCR inhibitors for heart-related diseases. To implement this, a 2D QSAR model was developed by correlating the structural properties to their biological activity of a series of atorvastatin analogs reported as HMGCR inhibitors. Then, the chemical similarity search of atorvastatin analogs was performed by using PubChem database search. Results and Discussion: The three-descriptor model of charge (GATS1p), connectivity (SCH-7) and distance (VE1_D) of the molecules is obtained for HMGCR inhibition with the statistical values of R2= 0.67, RMSEtr= 0.33, R2 ext= 0.64 and CCCext= 0.76. The 109 novel compounds were obtained by chemical similarity search and the inhibition activities of the compounds were predicted using QSAR model, which were close in the range of experimentally observed threshold. Conclusion: The present study suggests that the QSAR model and chemical similarity search could be used in combination for identification of novel compounds with activity by in silico with less computation and effort.





Sign in / Sign up

Export Citation Format

Share Document