A Unified Approach to Piecewise Linear Hopf and Hopf-Pitchfork Bifurcations

Author(s):  
Enrique Ponce ◽  
Javier Ros ◽  
Elísabet Vela
Author(s):  
János Lelkes ◽  
Tamás Kalmár-Nagy

Abstract Aeroelasticity is the study of the interaction of aerodynamic, elastic and inertia forces. When flexible structures, such as an airfoil, undergo wind excitation, divergence or flutter instability may arise. We study the dynamics of a two-degree-of-freedom (pitch and plunge) aeroelastic system with cubic structural nonlinearities. The aerodynamic forces are modeled as a piecewise linear function of the effective angle of attack. Stability and bifurcations of equilibria are analyzed. The effect of the structural nonlinearity is investigated. We find border collision, rapid, Hopf, saddle-node and pitchfork bifurcations. Bifurcation diagrams of the system were calculated utilizing MatCont and Mathematica.


2001 ◽  
Vol 20 (2) ◽  
pp. 159-169 ◽  
Author(s):  
M. Ganesh Madhan ◽  
P. R. Vaya ◽  
N. Gunasekaran

1981 ◽  
Vol 64 (10) ◽  
pp. 9-17 ◽  
Author(s):  
Toshimichi Saito ◽  
Hiroichi Fujita

Sign in / Sign up

Export Citation Format

Share Document