Towards Real-Time Processing of Massive Spatio-temporally Distributed Sensor Data: A Sequential Strategy Based on Kriging

Author(s):  
Peter Lorkowski ◽  
Thomas Brinkhoff
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1372 ◽  
Author(s):  
Manuel Garcia Alvarez ◽  
Javier Morales ◽  
Menno-Jan Kraak

Smart cities are urban environments where Internet of Things (IoT) devices provide a continuous source of data about urban phenomena such as traffic and air pollution. The exploitation of the spatial properties of data enables situation and context awareness. However, the integration and analysis of data from IoT sensing devices remain a crucial challenge for the development of IoT applications in smart cities. Existing approaches provide no or limited ability to perform spatial data analysis, even when spatial information plays a significant role in decision making across many disciplines. This work proposes a generic approach to enabling spatiotemporal capabilities in information services for smart cities. We adopted a multidisciplinary approach to achieving data integration and real-time processing, and developed a reference architecture for the development of event-driven applications. This type of applications seamlessly integrates IoT sensing devices, complex event processing, and spatiotemporal analytics through a processing workflow for the detection of geographic events. Through the implementation and testing of a system prototype, built upon an existing sensor network, we demonstrated the feasibility, performance, and scalability of event-driven applications to achieve real-time processing capabilities and detect geographic events.


Author(s):  
C. Böhme ◽  
P. Bouwer ◽  
M. J. Prinsloo

Some remote sensing applications are relatively time insensitive, for others, near-real-time processing (results 30-180 minutes after data reception) offer a viable solution. There are, however, a few applications, such as active wildfire monitoring or ship and airplane detection, where real-time processing and image interpretation offers a distinct advantage. The objective of real-time processing is to provide notifications before the complete satellite pass has been received. This paper presents an automated system for real-time, stream–based processing of data acquired from direct broadcast push-broom sensors for applications that require a high degree of timeliness. Based on this system, a processing chain for active fire monitoring using Landsat 8 live data streams was implemented and evaluated. The real-time processing system, called the FarEarth Observer, is connected to a ground station’s demodulator and uses its live data stream as input. Processing is done on variable size image segments assembled from detector lines of the push broom sensor as they are streamed from the satellite, enabling detection of active fires and sending of notifications within seconds of the satellite passing over the affected area, long before the actual acquisition completes. This approach requires performance optimized techniques for radiometric and geometric correction of the sensor data. Throughput of the processing system is kept well above the 400Mbit/s downlink speed of Landsat 8. A latency of below 10 seconds from sensor line acquisition to anomaly detection and notification is achieved. Analyses of geometric and radiometric accuracy and comparisons in latency to traditional near-real-time systems are also presented.


Author(s):  
Daiki Matsumoto ◽  
Ryuji Hirayama ◽  
Naoto Hoshikawa ◽  
Hirotaka Nakayama ◽  
Tomoyoshi Shimobaba ◽  
...  

Author(s):  
David J. Lobina

The study of cognitive phenomena is best approached in an orderly manner. It must begin with an analysis of the function in intension at the heart of any cognitive domain (its knowledge base), then proceed to the manner in which such knowledge is put into use in real-time processing, concluding with a domain’s neural underpinnings, its development in ontogeny, etc. Such an approach to the study of cognition involves the adoption of different levels of explanation/description, as prescribed by David Marr and many others, each level requiring its own methodology and supplying its own data to be accounted for. The study of recursion in cognition is badly in need of a systematic and well-ordered approach, and this chapter lays out the blueprint to be followed in the book by focusing on a strict separation between how this notion applies in linguistic knowledge and how it manifests itself in language processing.


2020 ◽  
pp. 1-25
Author(s):  
Theres Grüter ◽  
Hannah Rohde

Abstract This study examines the use of discourse-level information to create expectations about reference in real-time processing, testing whether patterns previously observed among native speakers of English generalize to nonnative speakers. Findings from a visual-world eye-tracking experiment show that native (L1; N = 53) but not nonnative (L2; N = 52) listeners’ proactive coreference expectations are modulated by grammatical aspect in transfer-of-possession events. Results from an offline judgment task show these L2 participants did not differ from L1 speakers in their interpretation of aspect marking on transfer-of-possession predicates in English, indicating it is not lack of linguistic knowledge but utilization of this knowledge in real-time processing that distinguishes the groups. English proficiency, although varying substantially within the L2 group, did not modulate L2 listeners’ use of grammatical aspect for reference processing. These findings contribute to the broader endeavor of delineating the role of prediction in human language processing in general, and in the processing of discourse-level information among L2 users in particular.


2021 ◽  
pp. 100489
Author(s):  
Paul La Plante ◽  
P.K.G. Williams ◽  
M. Kolopanis ◽  
J.S. Dillon ◽  
A.P. Beardsley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document