Metabolic Rates
Recently Published Documents





2021 ◽  
Vol 12 ◽  
Jenna M. Schmidt ◽  
Taylor M. Royalty ◽  
Karen G. Lloyd ◽  
Andrew D. Steen

Heterotrophic microorganisms in marine sediments produce extracellular enzymes to hydrolyze organic macromolecules, so their products can be transported inside the cell and used for energy and growth. Therefore, extracellular enzymes may mediate the fate of organic carbon in sediments. The Baltic Sea Basin is a primarily depositional environment with high potential for organic matter preservation. The potential activities of multiple organic carbon-degrading enzymes were measured in samples obtained by the International Ocean Discovery Program Expedition 347 from the Little Belt Strait, Denmark, core M0059C. Potential maximum hydrolysis rates (Vmax) were measured at depths down to 77.9mbsf for the following enzymes: alkaline phosphatase, β-d-xylosidase, β-d-cellobiohydrolase, N-acetyl-β-d-glucosaminidase, β-glucosidase, α-glucosidase, leucyl aminopeptidase, arginyl aminopeptidase, prolyl aminopeptidase, gingipain, and clostripain. Extracellular peptidase activities were detectable at depths shallower than 54.95mbsf, and alkaline phosphatase activity was detectable throughout the core, albeit against a relatively high activity in autoclaved sediments. β-glucosidase activities were detected above 30mbsf; however, activities of other glycosyl hydrolases (β-xylosidase, β-cellobiohydrolase, N-acetyl-β-glucosaminidase, and α-glucosidase) were generally indistinguishable from zero at all depths. These extracellular enzymes appear to be extremely stable: Among all enzymes, a median of 51.3% of enzyme activity was retained after autoclaving for an hour. We show that enzyme turnover times scale with the inverse of community metabolic rates, such that enzyme lifetimes in subsurface sediments, in which metabolic rates are very slow, are likely to be extraordinarily long. A back-of-the-envelope calculation suggests enzyme lifetimes are, at minimum, on the order of 230days, and may be substantially longer. These results lend empirical support to the hypothesis that a population of subsurface microbes persist by using extracellular enzymes to slowly metabolize old, highly degraded organic carbon.

2021 ◽  
Vol 118 (38) ◽  
pp. e2025211118
Ermes Botte ◽  
Francesco Biagini ◽  
Chiara Magliaro ◽  
Andrea Rinaldo ◽  
Amos Maritan ◽  

Variations and fluctuations are characteristic features of biological systems and are also manifested in cell cultures. Here, we describe a computational pipeline for identifying the range of three-dimensional (3D) cell-aggregate sizes in which nonisometric scaling emerges in the presence of joint mass and metabolic rate fluctuations. The 3D cell-laden spheroids with size and single-cell metabolic rates described by probability density functions were randomly generated in silico. The distributions of the resulting metabolic rates of the spheroids were computed by modeling oxygen diffusion and reaction. Then, a method for estimating scaling exponents of correlated variables through statistically significant data collapse of joint probability distributions was developed. The method was used to identify a physiologically relevant range of spheroid sizes, where both nonisometric scaling and a minimum oxygen concentration (0.04 mol⋅m−3) is maintained. The in silico pipeline described enables the prediction of the number of experiments needed for an acceptable collapse and, thus, a consistent estimate of scaling parameters. Using the pipeline, we also show that scaling exponents may be significantly different in the presence of joint mass and metabolic-rate variations typically found in cells. Our study highlights the importance of incorporating fluctuations and variability in size and metabolic rates when estimating scaling exponents. It also suggests the need for taking into account their covariations for better understanding and interpreting experimental observations both in vitro and in vivo and brings insights for the design of more predictive and physiologically relevant in vitro models.

2021 ◽  
Vol 224 (18) ◽  
Shaun S. Killen ◽  
Emil A. F. Christensen ◽  
Daphne Cortese ◽  
Libor Závorka ◽  
Tommy Norin ◽  

ABSTRACT Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that – in the future – data can be properly assessed by other scientists and conservationists.

2021 ◽  
Jack Wilkin

The stable isotopes of oxygen (O), carbon (C), strontium (Sr), hydrogen (H), and nitrogen (N) have all been utilised for great effect in palaeoclimate, palaeoecological and palaeobiological studies. Of these, O and C have been by far the most important and, in many types of study, their use has become routine in universities and research institutions around the world. Stable isotopes provide quantitative data about palaeotemperatures, metabolic rates, food webs, palaeosalinity, palaeoprecipitation and evaporation rates as well as glacial ice volumes, production and burial of organic carbon, and other processes related to palaeoclimatic/biological/ecological change. Except for Sr, all the previously mentioned isotopes (O, C, H, and N) directly record paleoclimatic, biological and palaeoecological processes. Conversely, Sr reflects the composition of rocks at the Earth's surface, and its values reflect on the climate indirectly as it is a proxy for global weathering rates and seafloor spreading. This review will only be focusing on three isotopes commonly deployed by palaeo-researchers: carbon, oxygen, and strontium.

2021 ◽  
Vol 9 (1) ◽  
Lloyd W. Hopkins ◽  
Nathan R. Geraldi ◽  
Edward C. Pope ◽  
Mark D. Holton ◽  
Miguel Lurgi ◽  

Abstract Background Quantifying metabolic rate in free-living animals is invaluable in understanding the costs of behaviour and movement for individuals and communities. Dynamic body acceleration (DBA) metrics, such as vectoral DBA (VeDBA), are commonly used as proxies for the energy expenditure of movement but are of limited applicability for slow-moving species. It has recently been suggested that metrics based on angular velocity might be better suited to characterise their energetics. We investigated whether a novel metric—the ‘Rate of change of Rotational Movement (RocRM)’, calculated from the vectoral sum of change in the pitch, roll and yaw/heading axes over a given length of time, is a suitable proxy for energy expenditure. Results We found that RocRM can be used as an alternative energy expenditure proxy in a slow-moving benthic invertebrate. Eleven Giant spider conchs Lambis truncata (collected in the Red Sea) were instrumented with multiple channel (Daily Diary) tags and kept in sealed chambers for 5 h while their oxygen consumption, V̇O2, was measured. We found RocRM to be positively correlated with V̇O2, this relationship being affected by the time-step (i.e. the range of the calculated differential) of the RocRM. Time steps of 1, 5, 10 and 60 s yielded an explained variability of between 15 and 31%. The relationship between V̇O2 and VeDBA was not statistically significant, suggesting RocRM to provide more accurate estimations of metabolic rates in L. truncata. Conclusions RocRM proved to be a statistically significant predictor of V̇O2 where VeDBA did not, validating the approach of using angular-based metrics over dynamic movement-based ones for slower moving animals. Further work is required to validate the use of RocRM for other species, particularly in animals with minimally dynamic movement, to better understand energetic costs of whole ecosystems. Unexplained variability in the models might be a consequence of the methodology used, but also likely a result of conch activity that does not manifest in movement of the shell. Additionally, density plots of mean RocRM at each time-step suggest differences in movement scales, which may collectively be useful as a species fingerprint of movement going forward.

2021 ◽  
Margarete Diaz-Cuadros ◽  
Teemu P Miettinen ◽  
Dylan Sheedy ◽  
Carlos Manlio Diaz-Garcia ◽  
Svetlana Gapon ◽  

Animals display significant inter-specific variation in the rate of embryonic development despite broad conservation of the overall sequence of developmental events. Differences in biochemical reaction speeds, including the rates of protein production and degradation, are thought to be responsible for distinct species-specific rates of development. However, the cause of differential biochemical reaction speeds between species remains unknown. Using pluripotent stem cells, we have established an in vitro system that recapitulates the two-fold difference in developmental rate between early mouse and human embryos. This system provides a quantitative measure of developmental speed as revealed by the period of the segmentation clock, a molecular oscillator associated with the rhythmic production of vertebral precursors. Using this system, we showed that mass-specific metabolic rates scale with developmental rate and are therefore elevated in mouse cells compared to human cells. We further showed that reducing these metabolic rates by pharmacologically inhibiting the electron transport chain slows down the segmentation clock. The effect of the electron transport chain on the segmentation clock is mediated by the cellular NAD+/NADH redox balance independent of ATP production and, further downstream, by the global rate of protein synthesis. These findings represent a starting point for the manipulation of developmental rate, which would find multiple translational applications including the acceleration of human pluripotent stem cell differentiation for disease modeling and cell-based therapies.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256292
Sarah H. Ledford ◽  
Jacob S. Diamond ◽  
Laura Toran

Urbanization and subsequent expansion of wastewater treatment plant (WWTP) capacity has the potential to alter stream metabolic regimes, but the magnitude of this change remains unknown. Indeed, our understanding of downstream WWTP effects on stream metabolism is spatially and temporally limited, and monitoring designs with upstream-downstream comparison sites are rare. Despite this, and despite observed spatiotemporal variability in stream metabolic regimes, regulators typically use snapshot monitoring to assess ecosystem function in receiving streams, potentially leading to biased conclusions about stream health. To address these important practical issues, we assessed the spatiotemporal variability in stream metabolism at nine sites upstream and downstream of four WWTPs in a suburban stream. We used one year (2017–2018) of high-frequency dissolved oxygen (DO) data to model daily gross primary productivity (GPP) and ecosystem respiration (ER). We found that GPP was 1.7–4.0 times higher and ER was 1.2–7.2 times higher downstream of the WWTPs, especially in spring when light was not limited by canopy shading. Critically, we observed that these effects were spatially limited to the kilometer or so just downstream of the plant. These effects were also temporally limited, and metabolic rates upstream of WWTPs were not different from sites downstream of the plant after leaf-out at some sites. Across sites, regardless of their relation to WWTPs, GPP was positively correlated with potential incident light suggesting that light is the dominant control on GPP in this system. Temporal windowing of DO to proposed regulatory monitoring lengths revealed that the violation frequency of water quality criteria depended on both the monitoring interval and start date. We conclude that spatiotemporal variability in metabolism and DO are crucial considerations when developing monitoring programs to assess ecosystem function, and that evidence of WWTP effects may only arise during high light conditions and at limited scales.

2021 ◽  
Venkataramanaiah Poli ◽  
Renuka Madduru ◽  
Srinivasulu Reddy Motireddy

Abstract The present study was performed to determine the protective effects of Vitamin C, Zinc and N-Acetylcysteine individually or in combinations with Cd, to monitor amelioration capability against Cd-induced oxidative damage in Wistar rats. Nine groups of rats were studied as experimental group. The present experiment was conducted for 45 days. Liver and kidneys were excised for biochemical determinations through assaying of antioxidant enzymes and lipid oxidation products to assess the impact of Cd-toxicity and its amelioration by co-administration of Vitamin C, Zinc and NAC along with Cd. Basal Metabolic rates, Tissue Respiration rates of liver and kidney were found to be significantly decreased (p < 0.05) during Cd toxicity. Serum biochemical parameters were also found to be significantly altered to cope up with Cd toxicity. All the antioxidant enzymes and products were significantly inhibited (p < 0.05) or elevated in rat liver and kidney tissues during Cd-induced toxicity. Whereas with co-administration of Vitamin C, Zinc and NAC, into rats clearly demonstrates the amelioration of oxidative damage induced by Cd-toxicity. From the results obtained in the present study all the agents tested had protective effects against Cd-induced oxidative damage.

Matías Reolid ◽  
Francisco J. Cardenal ◽  
Jesús Reolid

AbstractThe aim of this work is to obtain diverse morphometric data from digitized 3D models of scientifically accurate palaeoreconstructions of theropods from eight representative families. The analysed polyvinyl chloride (PVC) models belong to the genera Coelophysis, Dilophosaurus, Ceratosaurus, Allosaurus, Baryonyx, Carnotaurus, Giganotosaurus, and Tyrannosaurus. The scanned 3D models were scaled considering different body-size estimations of the literature. The 3D analysis of these genera provides information on the skull length and body length that allows for recognition of major evolutionary trends. The skull length/body length in the studied genera increases according with the size of the body from the smallest Coelophysis with a ratio of 0.093 to ratios of 0.119–0.120 for Tyrannosaurus and Giganotosaurus, the largest study theropods. The study of photogrammetric 3D models also provides morphometric information that cannot be obtained from the study of bones alone, but knowing that all reconstructions begin from the fossil bones, such as the surface/volume ratio (S/V). For the studied theropod genera surface/volume ratio ranges from 35.21 for Coelophysis to 5.55 for Tyrannosaurus. This parameter, closely related to the heat dissipation, help in the characterization of the metabolism of extinct taxa. Accordingly, slender primitive forms of the Early Jurassic (i.e. Coelophysis and Dilophosaurus) had relatively smaller skulls and higher mass-specific metabolic rates than the robust large theropods of the Cretaceous (i.e. Giganotosaurus and Tyrannosaurus). This work presents a technique that, when applied to proper dinosaur models, provides extent and accurate data that may help in diverse study areas within the dinosaur palaeontology and palaeobiology.

Sign in / Sign up

Export Citation Format

Share Document