scholarly journals Detection of Design Flaws in the Android Permission Protocol Through Bounded Verification

Author(s):  
Hamid Bagheri ◽  
Eunsuk Kang ◽  
Sam Malek ◽  
Daniel Jackson
Keyword(s):  
2020 ◽  
pp. 122-142
Author(s):  
Sapna Malik ◽  
Kiran Khatter

The Android Mobiles constitute a large portion of mobile market which also attracts the malware developer for malicious gains. Every year hundreds of malwares are detected in the Android market. Unofficial and Official Android market such as Google Play Store are infested with fake and malicious apps which is a warning alarm for naive user. Guided by this insight, this paper presents the malicious application detection and classification system using machine learning techniques by extracting and analyzing the Android Permission Feature of the Android applications. For the feature extraction, the authors of this work have developed the AndroData tool written in shell script and analyzed the extracted features of 1060 Android applications with machine learning algorithms. They have achieved the malicious application detection and classification accuracy of 98.2% and 87.3%, respectively with machine learning techniques.


2018 ◽  
Vol 9 (1) ◽  
pp. 95-114 ◽  
Author(s):  
Sapna Malik ◽  
Kiran Khatter

The Android Mobiles constitute a large portion of mobile market which also attracts the malware developer for malicious gains. Every year hundreds of malwares are detected in the Android market. Unofficial and Official Android market such as Google Play Store are infested with fake and malicious apps which is a warning alarm for naive user. Guided by this insight, this paper presents the malicious application detection and classification system using machine learning techniques by extracting and analyzing the Android Permission Feature of the Android applications. For the feature extraction, the authors of this work have developed the AndroData tool written in shell script and analyzed the extracted features of 1060 Android applications with machine learning algorithms. They have achieved the malicious application detection and classification accuracy of 98.2% and 87.3%, respectively with machine learning techniques.


2019 ◽  
Vol 9 (2) ◽  
pp. 277 ◽  
Author(s):  
Rajesh Kumar ◽  
Xiaosong Zhang ◽  
Riaz Khan ◽  
Abubakar Sharif

With the growing era of the Internet of Things (IoT), more and more devices are connecting with the Internet using android applications to provide various services. The IoT devices are used for sensing, controlling and monitoring of different processes. Most of IoT devices use Android applications for communication and data exchange. Therefore, a secure Android permission privileged mechanism is required to increase the security of apps. According to a recent study, a malicious Android application is developed almost every 10 s. To resist this serious malware campaign, we need effective malware detection approaches to identify malware applications effectively and efficiently. Most of the studies focused on detecting malware based on static and dynamic analysis of the applications. However, to analyse the risky permission at runtime is a challenging task. In this study, first, we proposed a novel approach to distinguish between malware and benign applications based on permission ranking, similarity-based permission feature selection, and association rule for permission mining. Secondly, the proposed methodology also includes the enhancement of the random forest algorithm to improve the accuracy for malware detection. The experimental outcomes demonstrate high proficiency of the accuracy for malware detection, which is pivotal for android apps aiming for secure data exchange between IoT devices.


Sign in / Sign up

Export Citation Format

Share Document