Electromagnetic Impact Vibration Energy Harvesters

Author(s):  
Mohamed Bendame ◽  
Eihab Abdel-Rahman ◽  
Mostafa Soliman
Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 890 ◽  
Author(s):  
Yasuyuki Naito ◽  
Keisuke Uenishi

An electret electrostatic MEMS vibration energy harvester for tire sensors mounted inside of the tire tread is reported. The device was designed so as to linearly change an electrostatic capacitance between the corrugated electret and output electrode according to the displacement of the proof mass. The electromechanical linearity was effective at reducing the power loss. The output power reached 495 μW under sinusoidal vibration despite the footprint size being as small as 1 cm2. Under impact vibration inside of the tire tread, the output power reached 60 μW at a traveling speed of 60 km/h. It was revealed that a higher mechanical resonance frequency of the harvester adjusted within the frequency band of a low-power spectral density of impact vibration acceleration was effective for high efficiency harvest impact vibration energy.


2013 ◽  
Vol 14 (4) ◽  
pp. 283-287 ◽  
Author(s):  
Pei-hong Wang ◽  
Kai Tao ◽  
Zhuo-qing Yang ◽  
Gui-fu Ding

2017 ◽  
Vol 27 (10) ◽  
pp. 104003 ◽  
Author(s):  
Shao-Tuan Chen ◽  
Sijun Du ◽  
Emmanuelle Arroyo ◽  
Yu Jia ◽  
Ashwin Seshia

Author(s):  
Sondipon Adhikari ◽  
Arnab Banerjee

Piezoelectric vibration energy harvesters have demonstrated the potential for sustainable energy generation from diverse ambient sources in the context of low-powered micro-scale systems. However, challenges remain concerning harvesting more power from low-frequency input excitations and broadband random excitations. To address this, here we propose a purely mechanical approach by employing inertial amplifiers with cantilever piezoelectric vibration energy harvesters. The proposed mechanism can achieve inertial amplification amounting to orders of magnitude under certain conditions. Harmonic, as well as broadband random excitations, are considered. Two types of harvesting circuits, namely, without and with an inductor, have been employed. We explicitly demonstrate how different parameters describing the inertial amplifiers should be optimally tuned to maximise harvested power under different types of excitations and circuit configurations. It is possible to harvest five times more power at a 50% lower frequency when the ambient excitation is harmonic. Under random broadband ambient excitations, it is possible to harvest 10 times more power with optimally selected parameters.


2012 ◽  
Vol 101 (10) ◽  
pp. 103904 ◽  
Author(s):  
D. Kim ◽  
N. N. Hewa-Kasakarage ◽  
S. Yoon ◽  
N. A. Hall

Sign in / Sign up

Export Citation Format

Share Document