energy harvesters
Recently Published Documents


TOTAL DOCUMENTS

1985
(FIVE YEARS 705)

H-INDEX

64
(FIVE YEARS 16)

2022 ◽  
Vol 168 ◽  
pp. 108612
Author(s):  
Xiaoqing Ma ◽  
Haitao Li ◽  
Shengxi Zhou ◽  
Zhichun Yang ◽  
Grzegorz Litak

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 133
Author(s):  
Hua-Ju Shih ◽  
Kuo-Ching Chen

Energy harvesters are devices that accumulate ambient vibrational energy from the environment, and for the time being, variable capacitance is the most widely used mechanism. Various designs were proposed to increase the power of such devices, and in particular, the interdigitated electrode (IDE) pattern is the mainstream. Nevertheless, most IDE designs focus merely on the parallel-type vibrations of electrodes. In this study, the performance of a novel harvester, which combined circular membrane and interdigitated ring electrodes (IRE), was investigated. This design allows the device to collect energy from the rotational structure motions of electrodes through the vibrating membrane. Besides, the circular structure provides a dense capacitive arrangement that is higher than that of the arrangement obtained using regular rectangular chips. The IRE diagram is composed of many capacitive rings, each of which harvests vibrated energy simultaneously. Three gaps (1, 10, and 100 μm) of the ring are investigated for the first four vibrational modes of the membrane to understand the effect of energy output. It is found that the energy outputs are approximately the same for the three gaps; however, rings with a wider gap are easier to manufacture in MEMS.


2022 ◽  
Vol 14 (2) ◽  
pp. 863
Author(s):  
Chenchen Li ◽  
Shifu Liu ◽  
Hongduo Zhao ◽  
Yu Tian

To advance the development of piezoelectric energy harvesters, this study designed and manufactured bridge-unit-based and pile-unit-based piezoelectric devices. An indoor material testing system and accelerated pavement test equipment were used to test the electrical performance, mechanical performance, and electromechanical coupling performance of the devices. The results showed that the elastic modulus of the pile structure device was relatively higher than that of the bridge structure device. However, the elastic modulus of the two devices should be improved to avoid attenuation in the service performance and fatigue life caused by the stiffness difference. Furthermore, the electromechanical conversion coefficients of the two devices were smaller than 10% and insensitive to the load magnitude and load frequency. Moreover, the two devices can harvest 3.4 mW and 2.6 mW under the wheel load simulated by the one-third scale model mobile load simulator, thus meeting the supply requirements of low-power sensors. The elastic modulus, electromechanical conversion coefficients, and electric performance of the pile structure device were more reliable than those of the bridge structure device, indicating a better application prospect in road engineering.


Author(s):  
Mohid Muneeb Khattak ◽  
Christopher Sugino ◽  
Alper Erturk

We investigate piezoelectric energy harvesting on a locally resonant metamaterial beam for concurrent power generation and bandgap formation. The mechanical resonators (small beam attachments on the main beam structure) have piezoelectric elements which are connected to electrical loads to quantify their electrical output in the locally resonant bandgap neighborhood. Electromechanical model simulations are followed by detailed experiments on a beam setup with nine resonators. The main beam is excited by an electrodynamic shaker from its base over the frequency range of0–150 Hz and the motion at the tip is measured using a laser Doppler vibrometer to extract its transmissibility frequency response. The formation of a locally resonant bandgap is confirmed and a resistor sweep is performed for the energy harvesters to capture the optimal power conditions. Individual power outputs of the harvester resonators are compared in terms of their percentage contribution to the total power output. Numerical and experimental analysis shows that, inside the locally resonant bandgap, most of the vibrational energy (and hence harvested energy) is localized near the excited base of the beam, and the majority of the total harvested power is extracted by the first few resonators.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 381
Author(s):  
Grzegorz Litak ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
Andrzej Rysak ◽  
Carlo Trigona

The piezoelectric energy-harvesting system with double-well characteristics and hysteresis in the restoring force is studied. The proposed system consists of a bistable oscillator based on a cantilever beam structure. The elastic force potential is modified by magnets. The hysteresis is an additional effect of the composite beam considered in this system, and it effects the modal solution with specific mass distribution. Consequently, the modal response is a compromise between two overlapping, competing shapes. The simulation results show evolution in the single potential well solution, and bifurcations into double-well solutions with the hysteretic effect. The maximal Lyapunov exponent indicated the appearance of chaotic solutions. Inclusion of the shape branch overlap parameter reduces the distance between the external potential barriers and leads to a large-amplitude solution and simultaneously higher voltage output with smaller excitation force. The overlap parameter works in the other direction: the larger the overlap value, the smaller the voltage output. Presumably, the successful jump though the potential barrier is accompanied by an additional switch between the corresponding shapes.


2022 ◽  
pp. 275-290
Author(s):  
Rathishchandra R. Gatti ◽  
Shruthi H. Shetty ◽  
Ashwath Rao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document