Multi-server Queue with Job Service Time Depending on a Background Process

Author(s):  
Tomoyuki Sakata ◽  
Shoji Kasahara
1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


2017 ◽  
Vol 51 (4) ◽  
pp. 931-944
Author(s):  
Senlin Yu ◽  
Zaiming Liu ◽  
Jinbiao Wu

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2134
Author(s):  
Alexander Dudin ◽  
Olga Dudina ◽  
Sergei Dudin ◽  
Konstantin Samouylov

A novel multi-server vacation queuing model is considered. The distinguishing feature of the model, compared to the standard queues, is the self-sufficiency of servers. A server can terminate service and go on vacation independently of the system manager and the overall situation in the system. The system manager can make decisions whether to allow the server to start work after vacation completion and when to try returning some server from a vacation to process customers. The arrival flow is defined by a general batch Markov arrival process. The problem of optimal choice of the total number of servers and the thresholds defining decisions of the manager arises. To solve this problem, the behavior of the system is described by the three-dimensional Markov chain with the special block structure of the generator. Conditions for the ergodicity of this chain are derived, the problem of computation of the steady-state distribution of the chain is discussed. Expressions for the key performance indicators of the system in terms of the distribution of the chain states are derived. An illustrative numerical result is presented.


2001 ◽  
Vol 37 (11) ◽  
pp. 881-919 ◽  
Author(s):  
Ram Chakka ◽  
Peter G. Harrison

2013 ◽  
Vol 65 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Jau-Chuan Ke ◽  
Chia-Huang Wu ◽  
Wen Lea Pearn

1970 ◽  
Vol 7 (2) ◽  
pp. 465-468 ◽  
Author(s):  
A. G. Pakes

In this note we adopt the notation and terminology of Kingman (1966) without further comment. For the general single server queue one has For the queueing systems GI/D/1 and D/G/1 we shall show that it is possible to make use of the special form of the service time and inter-arrival time distributions, respectively, to evaluate the right hand side of (1). A similar evaluation applies to the limiting distribution when it exists. The results obtained could also be obtained from those of Finch (1969) and Henderson and Finch (1970) by using suitable limiting arguments.


Sign in / Sign up

Export Citation Format

Share Document