A Markov modulated multi-server queue with negative customers – The MM CPP/GE/c/L G-queue

2001 ◽  
Vol 37 (11) ◽  
pp. 881-919 ◽  
Author(s):  
Ram Chakka ◽  
Peter G. Harrison
2017 ◽  
Vol 51 (4) ◽  
pp. 931-944
Author(s):  
Senlin Yu ◽  
Zaiming Liu ◽  
Jinbiao Wu

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2134
Author(s):  
Alexander Dudin ◽  
Olga Dudina ◽  
Sergei Dudin ◽  
Konstantin Samouylov

A novel multi-server vacation queuing model is considered. The distinguishing feature of the model, compared to the standard queues, is the self-sufficiency of servers. A server can terminate service and go on vacation independently of the system manager and the overall situation in the system. The system manager can make decisions whether to allow the server to start work after vacation completion and when to try returning some server from a vacation to process customers. The arrival flow is defined by a general batch Markov arrival process. The problem of optimal choice of the total number of servers and the thresholds defining decisions of the manager arises. To solve this problem, the behavior of the system is described by the three-dimensional Markov chain with the special block structure of the generator. Conditions for the ergodicity of this chain are derived, the problem of computation of the steady-state distribution of the chain is discussed. Expressions for the key performance indicators of the system in terms of the distribution of the chain states are derived. An illustrative numerical result is presented.


2013 ◽  
Vol 65 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Jau-Chuan Ke ◽  
Chia-Huang Wu ◽  
Wen Lea Pearn

1995 ◽  
Vol 32 (4) ◽  
pp. 1103-1111 ◽  
Author(s):  
Qing Du

Consider a single-server queue with zero buffer. The arrival process is a three-level Markov modulated Poisson process with an arbitrary transition matrix. The time the system remains at level i (i = 1, 2, 3) is exponentially distributed with rate cα i. The arrival rate at level i is λ i and the service time is exponentially distributed with rate μ i. In this paper we first derive an explicit formula for the loss probability and then prove that it is decreasing in the parameter c. This proves a conjecture of Ross and Rolski's for a single-server queue with zero buffer.


1990 ◽  
Vol 22 (3) ◽  
pp. 676-705 ◽  
Author(s):  
David M. Lucantoni ◽  
Kathleen S. Meier-Hellstern ◽  
Marcel F. Neuts

We study a single-server queue in which the server takes a vacation whenever the system becomes empty. The service and vacation times and the arrival process are all assumed to be mutually independent. The successive service times and the vacation times each form independent, identically distributed sequences with general distributions. A new class of non-renewal arrival processes is introduced. As special cases, it includes the Markov-modulated Poisson process and the superposition of phase-type renewal processes.Algorithmically tractable equations for the distributions of the waiting times at an arbitrary time and at arrivals, as well as for the queue length at an arbitrary time, at arrivals, and at departures are established. Some factorizations, which are known for the case of renewal input, are generalized to this new framework and new factorizations are obtained. The algorithmic implementation of these results is discussed.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ali Delavarkhalafi

<p style='text-indent:20px;'>In this paper, a queuing system as multi server queue, in which customers have a deadline and they request service from a random number of identical severs, is considered. Indeed there are stochastic jumps, in which the time intervals between successive jumps are independent and exponentially distributed. These jumps will be occurred due to a new arrival or situation change of servers. Therefore the queuing system can be controlled by restricting arrivals as well as rate of service for obtaining optimal stochastic jumps. Our model consists of a single queue with infinity capacity and multi server for a Poisson arrival process. This processes contains deterministic rate <inline-formula><tex-math id="M1">\begin{document}$ \lambda(t) $\end{document}</tex-math></inline-formula> and exponential service processes with <inline-formula><tex-math id="M2">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> rate. In this case relevant customers have exponential deadlines until beginning of their service. Our contribution is to extend the Ittimakin and Kao's results to queueing system with impatient customers. We also formulate the aforementioned problem with complete information as a stochastic optimal control. This optimal control law is found through dynamic programming.</p>


Sign in / Sign up

Export Citation Format

Share Document