Pitch Canker in California Mediterranean Conifer Systems

Author(s):  
T. R. Gordon
Keyword(s):  
Mycologia ◽  
2000 ◽  
Vol 92 (6) ◽  
pp. 1085-1090 ◽  
Author(s):  
Karen Wikler ◽  
Thomas R. Gordon ◽  
Sharon L. Clark ◽  
Michael J. Wingfield ◽  
Henriette Britz

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 560 ◽  
Author(s):  
Kateryna Davydenko ◽  
Justyna Nowakowska ◽  
Tomasz Kaluski ◽  
Magdalena Gawlak ◽  
Katarzyna Sadowska ◽  
...  

The fungal pathogen Fusarium circinatum is the causal agent of Pine Pitch Canker (PPC), a disease which seriously affects different species of pine in forests and nurseries worldwide. In Europe, the fungus affects pines in northern Spain and Portugal, and it has also been detected in France and Italy. Here, we report the findings of the first trial investigating the susceptibility of Polish provenances of Scots pine, Pinus sylvestris L., to infection by F. circinatum. In a greenhouse experiment, 16 Polish provenances of Scots pine were artificially inoculated with F. circinatum and with six other Fusarium species known to infect pine seedlings in nurseries. All pines proved highly susceptible to PPC and displayed different levels of susceptibility to the other Fusarium spp. tested. The findings obtained indicate the potentially strong threat of establishment of an invasive pathogen such as F. circinatum following unintentional introduction into Poland.


2002 ◽  
Vol 2 (4) ◽  
pp. 577-580 ◽  
Author(s):  
H. Britz ◽  
B. D. Wingfield ◽  
T. A. Coutinho ◽  
M. J. Wingfield

2020 ◽  
Vol 74 (3) ◽  
pp. 169-173
Author(s):  
Gordon Thomas R. ◽  
Reynolds Gregory J. ◽  
Kirkpatrick Sharon C. ◽  
Storer Andrew J. ◽  
Wood David L. ◽  
...  

Monterey pine (Pinus radiata) is a species of limited distribution, with three native populations in California. In 1986, a disease known as pitch canker, caused by the fungus Fusarium circinatum, was identified as the cause of extensive mortality in planted Monterey pines in Santa Cruz County. Monitoring studies on the Monterey Peninsula documented rapid progression of the disease in the native forest during the 1990s, with most trees sustaining some level of infection. However, between 1999 and 2013, the severity of pitch canker stabilized, with many previously diseased trees then free of symptoms, and plots monitored between 2011 and 2015 documented a steady decline in the occurrence of new infections. Consequently, whereas pitch canker was once a conspicuous visual blight in the forest, by the end of the observation period, symptomatic trees had become a rarity. The arrested development of pitch canker is suggestive of a reduction in the frequency and duration of fog near the coast, which provides conditions necessary for the pathogen to establish infections.


Plant Disease ◽  
2005 ◽  
Vol 89 (9) ◽  
pp. 1015-1015 ◽  
Author(s):  
E. Landeras ◽  
P. García ◽  
Y. Fernández ◽  
M. Braña ◽  
O. Fernández-Alonso ◽  
...  

During the winter of 2003-2004, dieback symptoms were observed on Pinus radiata and P. pinaster in pine nurseries in Asturias (northern Spain). Small groups of affected seedlings appeared randomly distributed throughout the nurseries. The seedlings died rapidly, showing basal needle dieback, stem lesions, resin exudations, and wilting. Isolations from infected material onto potato dextrose agar (PDA) supplemented with 0.5 mg/ml of streptomycin sulfate and Komada's medium consistently yielded Fusarium sp. cultures. The isolates were transferred to PDA and Spezieller Nährstoffarmer agar and incubated at 25°C for 10 days with a 12-h photoperiod. The cultures were identified as Fusarium circinatum Nirenberg & O'Donnell (= Fusarium subglutinans Wollenweb. & Reinking), causal agent of pitch canker disease, on basis of the presence of polyphialides and characteristic sterile, coiled, hyphae (2). To further confirm their identity, a polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) based on histone H3 gene sequences (4) and a test based on the F. circinatum-specific primers, CIRC1A-CIRC4A, which amplifies a 360-bp DNA fragment of the intergenic spacer region of the nuclear ribosomal operon (3), were used. Results obtained with both techniques confirmed the morphological identification of the cultures. A representative culture has been placed in the Centraalbureau voor Schimmelcultures (CBS 117843). The pathogen was isolated only from seedlings of P. radiata and P. pinaster. Other species such as P. nigra, P. sylvestris, and Pseudotsuga menziesii, which were also grown in these nurseries, did not show symptoms. Pathogenicity was confirmed by inoculating 6- to 9-month-old P. radiata and P. pinaster seedlings. Small strips of bark (10 × 1 mm) were cut from the stems and similar sized pieces of PDA colonized by F. circinatum were placed in contact with the open wounds and covered with parafilm. Basal needle dieback was observed 10 days after inoculation that resulted in wilting of the seedlings. F. circinatum was reisolated from the affected stems fulfilling Koch's postulates. Later in the year, symptoms of pitch canker were also observed on 20-year-old P. radiata in one forest plantation in Cantabria (northern Spain). Infected branches and shoots of the trees exudated abundant resin, resulting in resinous cankers. The needles, distal to branch tip infections, wilt, fade to yellow then red, and fall from the tree. Affected trees showed noticeable crown dieback. The isolations from the cankers also yielded F. circinatum cultures that were identified as described above. Although a nonrefereed report appeared in 1998 (1), to our knowledge, this is the first report of F. circinatum on P. radiata and P. pinaster in Spain and in Europe. References: (1) L. D. Dwinell et al. Int. Congr. Plant Pathol. 7th. 3:9, 1998. (2) H. I. Nirenberg and K. O'Donnell. Mycologia 90:434, 1998. (3) W. Schweigkofler et al. Appl. Environ. Microbiol. 70:3512, 2004. (4) E. T. Steenkamp et al. Appl. Environ. Microbiol. 65:3401, 1999.


2001 ◽  
Author(s):  
Andrew J Storer ◽  
David L Wood ◽  
Thomas R Gordon
Keyword(s):  

2007 ◽  
Vol 36 (4) ◽  
pp. 743-750 ◽  
Author(s):  
Pedro Romón ◽  
Juan Carlos Iturrondobeitia ◽  
Ken Gibson ◽  
B. Staffan Lindgren ◽  
Arturo Goldarazena

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1158 ◽  
Author(s):  
Cristina Zamora-Ballesteros ◽  
Julio J. Diez ◽  
Jorge Martín-García ◽  
Johanna Witzell ◽  
Alejandro Solla ◽  
...  

Fusarium circinatum (Nirenberg and O’ Donnell) is the causal agent of pine pitch canker (PPC) disease, one of the most devastating forest diseases worldwide. Long-distance spread occurs mainly through the movement of infected seeds whereas at regional level, the movement of seedlings, substrates, or containers may play an important role in fungal dispersal. Invasion of nurseries takes place via infected seeds and further spread can occur by planting contaminated seedlings, especially due to the possibility of infected plants remaining symptomless. Once established, F. circinatum spreads by rain, wind, and insects. The natural spread of the pathogen is limited due to the short dispersal distances of the spores and the fairly short flight distances of disseminating insects. In this review, we summarize the currently known dispersal pathways of the pathogen, discussing both natural and human-assisted processes. With the purpose of understanding how to best intervene in the disease’s development in nurseries and forests, we outline the epidemiology of the pathogen describing the key factors influencing its spread. Preventive measures to control the spread of F. circinatum locally and globally are described with special emphasis on the challenges in implementing them.


Sign in / Sign up

Export Citation Format

Share Document