Modelling and Analysis of Floating Ocean Wave Energy Extraction Devices

Author(s):  
Thomas J. Bridges ◽  
Matthew R. Turner ◽  
Hamid Alemi Ardakani
2016 ◽  
Vol 2016 ◽  
pp. 1-4
Author(s):  
Qin Guodong ◽  
Pang Quanru ◽  
Chen Zhongxian

Ocean wave energy is a high energy density and renewable resource. High power conversion rate is an advantage of linear generators to be the competitive candidates for ocean wave energy extraction system. In this paper, the feasibility of a wave energy extraction system by linear generator has been verified in an experimental flume. Besides, the analytical equations of heaving buoy oscillating in vertical direction are proposed, and the analytical equations are proved conveniently. What is more, the active power output of linear generator of wave energy extraction system in experimental flume is presented. The theoretical analysis and experimental results play a significant role for future wave energy extraction system progress in real ocean waves.


2017 ◽  
Author(s):  
Yihong Wong ◽  
Yeong-Jin King ◽  
An-Chow Lai ◽  
Kok-Keong Chong ◽  
Boon-Han Lim

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongxian Chen ◽  
Haitao Yu ◽  
Cheng Wen

The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.


Sign in / Sign up

Export Citation Format

Share Document