Methods for Job Scheduling on Computational Grids: Review and Comparison

Author(s):  
Edson Flórez ◽  
Carlos J. Barrios ◽  
Johnatan E. Pecero
Author(s):  
MALARVIZHI NANDAGOPAL ◽  
S. GAJALAKSHMI ◽  
V. RHYMEND UTHARIARAJ

Computational grids have the potential for solving large-scale scientific applications using heterogeneous and geographically distributed resources. In addition to the challenges of managing and scheduling these applications, reliability challenges arise because of the unreliable nature of grid infrastructure. Two major problems that are critical to the effective utilization of computational resources are efficient scheduling of jobs and providing fault tolerance in a reliable manner. This paper addresses these problems by combining the checkpoint replication based fault tolerance mechanism with minimum total time to release (MTTR) job scheduling algorithm. TTR includes the service time of the job, waiting time in the queue, transfer of input and output data to and from the resource. The MTTR algorithm minimizes the response time by selecting a computational resource based on job requirements, job characteristics, and hardware features of the resources. The fault tolerance mechanism used here sets the job checkpoints based on the resource failure rate. If resource failure occurs, the job is restarted from its last successful state using a checkpoint file from another grid resource. Globus ToolKit is used as the grid middleware to set up a grid environment and evaluate the performance of the proposed approach. The monitoring tools Ganglia and Network Weather Service are used to gather hardware and network details, respectively. The experimental results demonstrate that, the proposed approach effectively schedule the grid jobs with fault-tolerant way thereby reduces TTR of the jobs submitted in the grid. Also, it increases the percentage of jobs completed within specified deadline and making the grid trustworthy.


2006 ◽  
Vol 12 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Javier Carretero ◽  
Fatos Xhafa

In this paper we present the implementation of Genetic Algorithms (GA) for job scheduling on computational grids that optimizes the makespan and the total flowtime. Job scheduling on computational grids is a key problem in large scale grid‐based applications for solving complex problems. The aim is to obtain an efficient scheduler able to allocate a large number of jobs originated from large scale applications to grid resources. Several variations for GA operators are examined in order to identify which works best for the problem. To this end we have developed a grid simulator package to generate large and very large size instances of the problem and have used them to study the performance of GA implementation. Through extensive experimenting and fine tuning of parameters we have identified the configuration of operators and parameters that outperforms the existing implementations in the literature for static instances of the problem. The experimental results show the robustness of the implementation, improved performance of static instances compared to reported results in the literature and, finally, a fast reduction of the makespan making thus the scheduler of practical interest for grid environments.


Sign in / Sign up

Export Citation Format

Share Document