An Approach for the Automatic Adaptation of Domain-Specific Modeling Languages for Model-Driven Mobile Application Development

Author(s):  
Xiaoping Jia ◽  
Christopher Jones
Author(s):  
Joe Hoffert ◽  
Douglas C. Schmidt ◽  
Aniruddha Gokhale

Model-Driven Engineering (MDE), in general, and Domain-Specific Modeling Languages (DSMLs), in particular, are increasingly used to manage the complexity of developing applications in various domains. Although many DSML benefits are qualitative (e.g., ease of use, familiarity of domain concepts), there is a need to quantitatively demonstrate the benefits of DSMLs (e.g., quantify when DSMLs provide savings in development time) to simplify comparison and evaluation. This chapter describes how the authors conducted quantitative productivity analysis for a DSML (i.e., the Distributed Quality-of-Service [QoS] Modeling Language [DQML]). The analysis shows (1) the significant quantitative productivity gain achieved when using a DSML to develop configuration models compared with not using a DSML, (2) the significant quantitative productivity gain achieved when using a DSML interpreter to automatically generate implementation artifacts as compared to alternative methods when configuring application entities, and (3) the viability of quantitative productivity metrics for DSMLs.


2017 ◽  
Vol 14 (3) ◽  
pp. 875-912 ◽  
Author(s):  
Geylani Kardas ◽  
Emine Bircan ◽  
Moharram Challenger

The conventional approach currently followed in the development of domain-specific modeling languages (DSMLs) for multi-agent systems (MASs) requires the definition and implementation of new model-to-model and model-totext transformations from scratch in order to make the DSMLs functional for each different agent execution platforms. In this paper, we present an alternative approach which considers the construction of the interoperability between MAS DSMLs for a more efficient way of platform support extension. The feasibility of using this new interoperability approach instead of the conventional approach is exhibited by discussing and evaluating the model-driven engineering required for the application of both approaches. Use of the approaches is also exemplified with a case study which covers the model-driven development of an agent-based stock exchange system. In comparison to the conventional approach, evaluation results show that the interoperability approach requires both less development time and effort considering design and implementation of all required transformations.


Author(s):  
Srdjan Zivkovic ◽  
Krzystof Miksa ◽  
Harald Kühn

It has been acknowledged that model-based approaches and domain-specific modeling (DSM) languages, methods and tools are beneficial for the engineering of increasingly complex systems and software. Instead of general-purpose one-size-fits-all modeling languages, DSM methods facilitate model-based analysis and design of complex systems by providing modeling concepts tailored to the specific problem domain. Furthermore, hybrid DSM methods combine single DSM methods into integrated modeling methods, to allow for multi-perspective modeling. Metamodeling platforms provide flexible means for design and implementation of such hybrid modeling methods and appropriate domain-specific modeling tools. In this paper, we report on the conceptualization of a hybrid DSM method in the domain of network physical devices management, and its implementation based on the ADOxx metamodeling platform. The method introduces a hybrid modeling approach. A dedicated DSM language (DSML) is used to model the structure of physical devices and their configurations, whereas the formal language for knowledge representation OWL2 is used to specify configuration-related constraints. The outcome of the work is a hybrid, semantic technology-enabled DSM tool that allows for efficient and consistency-preserving model-based configuration of network equipment.


Sign in / Sign up

Export Citation Format

Share Document