automatic adaptation
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 935 (1) ◽  
pp. 012029
Author(s):  
Yu Kazakov ◽  
V Batmanov ◽  
V Pavlov ◽  
V Medvedev

Abstract The performance indicators of wheeled arable machine-tractor units, which are accelerated on the working gear, depend on the operating modes of the wheels during this period. When the wheel is skidding, soil lumps break down in the contact spot, the soil structure is destroyed. Based on the system analysis of the wheels operation, the method of their improvement is justified by continuous control of the eccentric point of application of the driving torque and external load. As a result of the analysis for the first time, a soil-sparing wheel mover with the properties of a differential, a tangential force regulator and clearance regulator was developed. In the case of an eccentric application of a vertical load and a longitudinal pushing force, one of the satellites of the wheeled planetary gearbox is the leading and bearing one. The purpose of the article is to analyze the factors influencing the automatic adaptation of the wheel drive to changing operating conditions. It is established the relationship between the driving moment and the rolling resistance moment, the moments of inertia of the wheel and the drive gear of the integrated differential.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7882
Author(s):  
Andrzej Popenda ◽  
Andrzej Szafraniec ◽  
Andriy Chaban

The electromechanical systems under analysis include electric drives, working machines that perform specific tasks in the technological process, and working mechanisms that transmit mechanical power between the electric drive and the working machine. The vast majority of electric motors included in drive systems require rotational speed control. This task is most often performed with the use of closed-loop control structures based on speed controllers. A step or overly rapid change in the speed reference causes a temporary lock of the speed controller due to the applied limitations at its output. Particularly, unfavorable effects of such a lock can be observed in drive systems in which there is a long elastic coupling (transmission shaft) between the electric motor and the working machine. As a consequence, shaft torsion and accompanying twisting moments of considerable amplitudes appear. This article proposes an uncomplicated active torque limiter structure, which enables the uninterrupted operation of the speed controller thanks to the automatic adaptation of the rate of the speed reference change to any moment of inertia of the rotor and attached rotating masses. The results of the investigations confirm the effectiveness of the proposed structure.


2021 ◽  
Author(s):  
Dogan Corus ◽  
Pietro S. Oliveto ◽  
Donya Yazdani
Keyword(s):  

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110451
Author(s):  
Qizhi Xie ◽  
Songyong Liu ◽  
Xiliang Ma

This paper presents a novel double-direction inchworm in-pipe robot, called the Cam-Linkage Robot (CLR), used to carry sensors and instruments to perform inspection and cleaning jobs inside pipelines. The prototype has been developed to improve the driving ability and reduce the difficulty of control. CLR is suitable for pipe diameters from 360 mm to 400 mm due to its functions of manual adjustment and automatic adaptation. The structure of CLR was presented and some critical design issues on the principle of cam-linkage mechanism were discussed. Based on cam-linkage mechanism, CLR could press the wall actively and creep in two directions via only one motor, so this research has broken the limitation that traditional active wall-press robot needs more than one actuator. The cam pressure angle could be reduced to 0, and the propulsion ability was almost not weakened by the support motion at the stable support stage. Finally, experiments were conducted to validate the locomotion principle and the effectiveness of CLR.


2021 ◽  
Vol 11 (17) ◽  
pp. 7986
Author(s):  
Vânia Guimarães ◽  
Elsa Oliveira ◽  
Alberto Carvalho ◽  
Nuno Cardoso ◽  
Johannes Emerich ◽  
...  

In addition to contributing to increased training motivation, exergames are a promising approach to counteract age-related impairments. Mobility limitations, cognitive impairment, and urinary incontinence are very common in older adults. To optimally address these conditions, exergames should include interventions for strength, balance, cognition, and pelvic floor muscle training. In this study, we develop a personalized multicomponent exergame solution for the geriatric rehabilitation of age-related impairments. The exergame can provide interventions for balance, strength, cognition, and urinary incontinence in one single session, accommodating the needs of older adults with multiple disabilities. For its development, we involved a multidisciplinary team that helped us to specify the structure and contents of the exergame considering training requirements, game design principles, and end-user characteristics. In addition to allowing the customization of the training components, the exergame includes automatic adaptation of difficulty/load, in line with player progress over time. The game mechanics ensures the fulfilment of training needs as defined by the therapist. The exergame is cross-platform compatible (web-based) and includes novel means of interaction with wearable sensors.


Author(s):  
Shunki Nishii ◽  
Yudai Yamasaki

Abstract To achieve high thermal efficiency and low emission in automobile engines, advanced combustion technologies using compression autoignition of premixtures have been studied, and model-based control has attracted attention for their practical applications. Although simplified physical models have been developed for model-based control, appropriate values for their model parameters vary depending on the operating conditions, the engine driving environment, and the engine aging. Herein, we studied an onboard adaptation method of model parameters in a heat release rate (HRR) model. This method adapts the model parameters using neural networks (NNs) considering the operating conditions and can respond to the driving environment and the engine aging by training the NNs onboard. Detailed studies were conducted regarding the training methods. Furthermore, the effectiveness of this adaptation method was confirmed by evaluating the prediction accuracy of the HRR model and model-based control experiments.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4342
Author(s):  
Vinícius Silva ◽  
Filomena Soares ◽  
Celina P. Leão ◽  
João Sena Esteves ◽  
Gianni Vercelli

Individuals with Autism Spectrum Disorder (ASD) typically present difficulties in engaging and interacting with their peers. Thus, researchers have been developing different technological solutions as support tools for children with ASD. Social robots, one example of these technological solutions, are often unaware of their game partners, preventing the automatic adaptation of their behavior to the user. Information that can be used to enrich this interaction and, consequently, adapt the system behavior is the recognition of different actions of the user by using RGB cameras or/and depth sensors. The present work proposes a method to automatically detect in real-time typical and stereotypical actions of children with ASD by using the Intel RealSense and the Nuitrack SDK to detect and extract the user joint coordinates. The pipeline starts by mapping the temporal and spatial joints dynamics onto a color image-based representation. Usually, the position of the joints in the final image is clustered into groups. In order to verify if the sequence of the joints in the final image representation can influence the model’s performance, two main experiments were conducted where in the first, the order of the grouped joints in the sequence was changed, and in the second, the joints were randomly ordered. In each experiment, statistical methods were used in the analysis. Based on the experiments conducted, it was found statistically significant differences concerning the joints sequence in the image, indicating that the order of the joints might impact the model’s performance. The final model, a Convolutional Neural Network (CNN), trained on the different actions (typical and stereotypical), was used to classify the different patterns of behavior, achieving a mean accuracy of 92.4% ± 0.0% on the test data. The entire pipeline ran on average at 31 FPS.


Sign in / Sign up

Export Citation Format

Share Document