Interpreting Spatiotemporal Parameters, Symmetry, and Variability in Clinical Gait Analysis

2016 ◽  
pp. 1-20
Author(s):  
Arnaud Gouelle ◽  
Fabrice Mégrot
2021 ◽  
Vol 85 ◽  
pp. 55-64
Author(s):  
Julian Rudisch ◽  
Thomas Jöllenbeck ◽  
Lutz Vogt ◽  
Thomas Cordes ◽  
Thomas Jürgen Klotzbier ◽  
...  

2020 ◽  
Vol 81 ◽  
pp. 281-282
Author(s):  
S. Pitarch-Corresa ◽  
C. Herrera-Ligero ◽  
J.Y. Torres-Villanueva ◽  
E. Medina-Ripoll ◽  
F. Parra-González ◽  
...  

2015 ◽  
Vol 42 ◽  
pp. S37
Author(s):  
M. Alvela ◽  
M. Bergmann ◽  
M.-L. Ööpik ◽  
Ü. Kruus ◽  
K. Englas ◽  
...  

1996 ◽  
Vol 4 (2) ◽  
pp. 169-170 ◽  
Author(s):  
Freeman Miller ◽  
Patrick Castagno ◽  
James Richards ◽  
Nancy Lennon ◽  
Edward Quigley ◽  
...  

Author(s):  
Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  
...  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.


Sign in / Sign up

Export Citation Format

Share Document