A Decision Support System for Emergency Management of Critical Infrastructures Subjected to Natural Hazards

Author(s):  
Vittorio Rosato ◽  
Antonio Di Pietro ◽  
Luigi La Porta ◽  
Maurizio Pollino ◽  
Alberto Tofani ◽  
...  
Author(s):  
Tina Comes ◽  
Niek Wijngaards ◽  
Michael Hiete ◽  
Claudine Conrado ◽  
Frank Schultmann

Decision-making in emergency management is a challenging task as the consequences of decisions are considerable, the threatened systems are complex and information is often uncertain. This paper presents a distributed system facilitating better-informed decision-making in strategic emergency management. The construction of scenarios provides a rationale for collecting, organising, and processing information. The set of scenarios captures the uncertainty of the situation and its developments. The relevance of scenarios is ensured by gearing the scenario construction to assessing alternatives, thus avoiding time-consuming processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to both the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios. The theoretical framework is demonstrated in a distributed decision support system by orchestrating experts into workflows tailored to each specific decision.


Author(s):  
Tina Comes ◽  
Niek Wijngaards ◽  
Michael Hiete ◽  
Claudine Conrado ◽  
Frank Schultmann

Decision-making in emergency management is a challenging task as the consequences of decisions are considerable, the threatened systems are complex and information is often uncertain. This paper presents a distributed system facilitating better-informed decision-making in strategic emergency management. The construction of scenarios provides a rationale for collecting, organising, and processing information. The set of scenarios captures the uncertainty of the situation and its developments. The relevance of scenarios is ensured by gearing the scenario construction to assessing alternatives, thus avoiding time-consuming processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to both the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios. The theoretical framework is demonstrated in a distributed decision support system by orchestrating experts into workflows tailored to each specific decision.


Sign in / Sign up

Export Citation Format

Share Document