Surface Runoff Depth by SCS Curve Number Method Integrated with Satellite Image and GIS Techniques

Author(s):  
Thiyam Tamphasana Devi ◽  
Yashwant Baskar Katpatal
2007 ◽  
Vol 21 (21) ◽  
pp. 2872-2881 ◽  
Author(s):  
R. K. Sahu ◽  
S. K. Mishra ◽  
T. I. Eldho ◽  
M. K. Jain

2021 ◽  
pp. 512
Author(s):  
ميسون بركات حسين الزغول ◽  
يسرى عبدالكريم الحسبان

2001 ◽  
Vol 44 (6) ◽  
Author(s):  
Y. Yuan ◽  
J. K. Mitchell ◽  
M. C. Hirschi ◽  
R. A. C. Cooke

2014 ◽  
Vol 6 (3) ◽  
Author(s):  
Costache Romulus ◽  
Fontanine Iulia ◽  
Corodescu Ema

AbstractSǎrǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in Sǎrǎţel catchment, between 1990–2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.


IARJSET ◽  
2017 ◽  
Vol 4 (7) ◽  
pp. 34-38
Author(s):  
P ANIL KUMAR ◽  
Dr VISWANADH GK

2021 ◽  
Author(s):  
Evgenia Koltsida ◽  
Nikos Mamassis ◽  
Andreas Kallioras

Abstract. SWAT (Soil and Water Assessment Tool) is a continuous time, semi-distributed river basin model that has been widely used to evaluate the effects of alternative management decisions on water resources. This study, demonstrates the application of SWAT model for streamflow simulation in an experimental basin with daily and hourly rainfall observations to investigate the influence of rainfall resolution on model performance. The model was calibrated for 2018 and validated for 2019 using the SUFI-2 algorithm in the SWAT-CUP program. Daily surface runoff was estimated using the Curve Number method and hourly surface runoff was estimated using the Green and Ampt Mein Larson method. A sensitivity analysis conducted in this study showed that the parameters related to groundwater flow were more sensitive for daily time intervals and channel routing parameters were more influential for hourly time intervals. Model performance statistics and graphical techniques indicated that the daily model performed better than the sub-daily model. The Curve Number method produced higher discharge peaks than the Green and Ampt Mein Larson method and estimated better the observed values. Overall, the general agreement between observations and simulations in both models suggests that the SWAT model appears to be a reliable tool to predict discharge over long periods of time.


Sign in / Sign up

Export Citation Format

Share Document