arid area
Recently Published Documents


TOTAL DOCUMENTS

822
(FIVE YEARS 237)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 82 ◽  
Author(s):  
L. Luqman ◽  
K. Saeed ◽  
K. Muhammad ◽  
M. S. Ahmad ◽  
F. Akbar ◽  
...  

Abstract The present research was carried out to explore the spider fauna of Buner valley with taxonomic study from February 2018 to January 2019. For this purpose samples were collected, four times at each month from 4 tehsils: Daggar, Gagra, Mandan and Totalai. Two methods were used, hand picking and sweep net for collection of samples. During day and night, three habitats, arid area, agriculture land and building area were search for collection. A total of 534 samples of spider were collected from four sampling sites, in which 379 were belonging to family Araniedae. After confirmation, the identified species were belonging to 8 genera (Neoscona, Argiope, Cyclosa, Araneus, Cyrtophora, Larinia, Erivoxia and Poltys) and 19 species. 18 of them were identified to specie level while a single specie to its generic level. The genus Neoscona was the dominant genus 26.31% having 5 species while the genus Argiope 21.05% is the second dominant having 4 species followed by Cyclosa 15.78% having 3 species followed by Cyrtophora and Araneus 10.52% having two species both. The Poltys and Larinia 5.26% are the rarest genera represent single-single specie both. Statistical analysis show that specie richness (D) = 5.77, Simpson index (1-D) = 0.87, Shannon index (H) = 2.33. Diversity of spiders was evenly distributed and calculated Evenness value was H/InS = 0.5408. There is also few atypical species and Fisher alpha estimate high value (Fisher α) = 4.42. Chao-1 estimated we have reported 22 species.


2021 ◽  
Vol 13 (24) ◽  
pp. 5107
Author(s):  
Xinran Xia ◽  
Disong Fu ◽  
Ye Fei ◽  
Wei Shao ◽  
Xiangao Xia

Quantification of uncertainties associated with satellite precipitation products is a prior requirement for their better applications in earth science studies. An improved scheme is developed in this study to decompose mean bias error (MBE) and mean square error (MSE) into three components, i.e., MBE and MSE associated hits, missed precipitation, and false alarms, respectively, which are weighted by their relative frequencies of occurrence (RFO). The trend of total MBE or MSE is then naturally decomposed into six components according to the chain rule for derivatives. Quantitative estimation of individual contributions to total MBE and MSE is finally derived. The method is applied to validation of Integrated MultisatellitE Retrievals for GPM (IMERG) in Mainland China. MBE associated with false alarms is an important driver for total MBE, while MSE associated with hits accounts for more than 85% of MSE, except in inland semi-arid area. The RFO of false alarms increases, whereas the RFO of missed precipitation decreases. Both factors lead in part to a growing trend for total MBE. Detection of precipitation should be improved in the IMERG algorithm. More specifically, the priority should be to reduce false alarms.


Author(s):  
Francisco Pedrero Salcedo ◽  
Pedro Pérez Cutillas ◽  
Juan José Alarcón Cabañero ◽  
Alessandro Gaetano Vivaldi

Sign in / Sign up

Export Citation Format

Share Document