Recent Advances in Fluid–Structure Interaction Simulations of Wind Turbines

Author(s):  
A. Korobenko ◽  
X. Deng ◽  
J. Yan ◽  
Y. Bazilevs
Author(s):  
Yogesh Ramesh Patel

This paper provides a brief overview of the research in the field of Fluid-structure interaction in Wind Turbines. Fluid-Structure Interaction (FSI) is the interplay of some movable or deformable structure with an internal or surrounding fluid flow. Flow brought about vibrations of two airfoils used in wind turbine blades are investigated by using a strong coupled fluid shape interplay approach. The approach is based totally on a regularly occurring Computational Fluid Dynamics (CFD) code that solves the Navier-Stokes equations defined in Arbitrary Lagrangian-Eulerian (ALE) coordinates by way of a finite extent method. The need for the FSI in the wind Turbine system is studied and comprehensively presented.


Author(s):  
Rainald Lohner ◽  
Fernando Mut ◽  
Fernando Camelli ◽  
Joseph D. Baum ◽  
Orlando Soto ◽  
...  

Author(s):  
Rainald Löhner ◽  
Eberhard Haug ◽  
Alexander Michalski ◽  
Britto Muhammad ◽  
Atis Drego ◽  
...  

2019 ◽  
Author(s):  
Yasir Shkara ◽  
Martin Cardaun ◽  
Ralf Schelenz ◽  
Georg Jacobs

Abstract. With the increase demand for greener, sustainable and economical energy sources, wind energy has proven a potential promising sustainable source of energy. The trend development of wind turbines tends to increase rotor diameter and tower height to capture more energy. The bigger, lighter and more flexible structure is more sensitive to smaller excitations. To make sure that the dynamic behavior of the wind turbine structure will not influence the stability of the system and to further optimize the structure, a fully detailed analyses of the entire wind turbine structure is crucial. Since the fatigue and the excitation of the structure are highly depend on the aerodynamic forces, it is important to take blade-tower interaction into consideration in the design of large-scale wind turbines. In this work, an aeroelastic model that describes the interaction between the blade and the tower of a horizontal axis wind turbine (HAWT) is presented. The high-fidelity fluid-structure interaction (FSI) model is developed by coupling a computational fluid dynamics (CFD) solver with finite element (FE) solver to investigate the response of a multi-megawatt wind turbine structure. The results of the computational simulation showed that the dynamic response of the tower is highly depend on the rotor azimuthal position. Furthermore, rotation of the blades in front of the tower cause not only aerodynamic force pulls on the blade but a sudden reduction of the rotor aerodynamic torque by 2.3 % three times per revolution.


2020 ◽  
Vol 5 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Yasir Shkara ◽  
Martin Cardaun ◽  
Ralf Schelenz ◽  
Georg Jacobs

Abstract. With the increasing demand for greener, sustainable, and economical energy sources, wind energy has proven to be a potential sustainable source of energy. The trend development of wind turbines tends to increase rotor diameter and tower height to capture more energy. The bigger, lighter, and more flexible structure is more sensitive to smaller excitations. To make sure that the dynamic behavior of the wind turbine structure will not influence the stability of the system and to further optimize the structure, a fully detailed analysis of the entire wind turbine structure is crucial. Since the fatigue and the excitation of the structure are highly depending on the aerodynamic forces, it is important to take blade–tower interactions into consideration in the design of large-scale wind turbines. In this work, an aeroelastic model that describes the interaction between the blade and the tower of a horizontal axis wind turbine (HAWT) is presented. The high-fidelity fluid–structure interaction (FSI) model is developed by coupling a computational fluid dynamics (CFD) solver with a finite element (FE) solver to investigate the response of a multi-megawatt wind turbine structure. The results of the computational simulation showed that the dynamic response of the tower is highly dependent on the rotor azimuthal position. Furthermore, rotation of the blades in front of the tower causes not only aerodynamic forces on the blades but also a sudden reduction in the rotor aerodynamic torque by 2.3 % three times per revolution.


Sign in / Sign up

Export Citation Format

Share Document