complex fluid
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 111)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Rajeeva Pandian Navaneeth Krishna ◽  
Abhishek Jain

BACKGROUND: Almost 95% of the venous valves are micron scale found in veins smaller than 300μm diameter. The fluid dynamics of blood flow and transport through these micro venous valves and their contribution to thrombosis is not yet well understood or characterized due to difficulty in making direct measurements in murine models. OBJECTIVE: The unique flow patterns that may arise in physiological and pathological non-actuating micro venous valves are predicted. METHODS: Computational fluid and transport simulations are used to model blood flow and oxygen gradients in a microfluidic vein. RESULTS: The model successfully recreates the typical non-Newtonian vortical flow within the valve cusps seen in preclinical experimental models and in clinic. The analysis further reveals variation in the vortex strengths due to temporal changes in blood flow. The cusp oxygen is typically low from the main lumen, and it is regulated by systemic venous flow. CONCLUSIONS: The analysis leads to a clinically-relevant hypothesis that micro venous valves may not create a hypoxic environment needed for endothelial inflammation, which is one of the main causes of thrombosis. However, incompetent micro venous valves are still locations for complex fluid dynamics of blood leading to low shear regions that may contribute to thrombosis through other pathways.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Xiang Zhang ◽  
Yinghou Jiao ◽  
Xiuquan Qu ◽  
Guanghe Huo ◽  
Zhiqian Zhao

The seal is designed to reduce leakage and improve the efficiency of gas turbine machines, and is an important technology that needs to be studied in gas turbine design. A series of seals were proposed to try to achieve this goal. However, due to the complex fluid dynamic performance of the seal-rotor system, the seal structure can obtain both the best leakage performance and best rotordynamic performance. This paper presents a detailed flow analysis of the hole diaphragm labyrinth seal (HDLS) at several whirl frequencies and several rotation speeds. The pressure drop, velocity, turbulence kinetic energy and leakage performance of the HDLS were discussed by simulations. An interesting exponential–type relationship between rotation speeds and leakage flow at different whirl frequencies was observed by curve fitting technology. A reverse flow rate was proposed to describe such an unusual phenomenon. Such a relationship can be used to further establish the leakage model of the HDLS and other similar seals.


2021 ◽  
Author(s):  
Alessandro Lenci ◽  
Yves Meheust ◽  
Mario Putti ◽  
Vittorio Di Federico
Keyword(s):  

Author(s):  
Laura Sánchez-García ◽  
Armando Perez-Torres ◽  
Samira Muñoz-Cruz ◽  
Jorge Morales-Montor ◽  
Ingeborg Becker

Mast cells (MCs) play a crucial role during infections with Leishmania, that is transmitted through the bite of an infected sand fly that injects saliva together with the parasite. Sand fly saliva is a complex fluid that modulates the host immune response. In addition, hormonal factors modulate the host immune response, impacting the susceptibility to infections. Thus, to assess the impact of androgens and salivary proteins of sand fly vectors on the mast cell (MC) response to Leishmania infections, we infected orchiectomized male mice with the parasite in the presence or absence of sand fly salivary proteins and analyzed the inflammatory response of MCs. Our results showed a differential MC response to the parasite and to vector salivary proteins in mice deprived of gonadal hormones, as compared to sham-operated mice. Orchidectomy induced a different pattern of activation in MC of animals infected with Leishmania and vector-salivary proteins. Our results show that during Leishmania infection, androgens modulate the innate immunity response against the parasite and salivary proteins of the sand fly vector.


2021 ◽  
Author(s):  
◽  
Mehrdad Ghahraee

<p>Flow properties of a complex fluid depend on not only the characterizations of the components that make up the system but also the interactions between the phases. One of the most significant factors that affect these interactions is the length scale of the dispersed phase. According to Stokes law, the root of complex fluid rheological models, the velocity of a moving particle in a fluid is a function of the viscosity of the fluid and also the size of the moving droplet. The main aim of this research is to understand the crucial elements that define and control the rheological behaviour of complex fluids and thereby provide evidence for proposed modifications of the available rheological models to include parameters that capture the deduced crucial elements. In particular, by adjusting different aspects of Stokes law. The modified models can then be applied to a wider range of complex fluid systems, including emulsions, regardless of the chemicals that form the system.  The complex fluids used in this research to develop the above are emulsions with droplets ranging over four orders of magnitude, 10 nm to 100 µm. Within a single base chemical system microemulsions, nanoemulsions and macroemulsions could be formed. The length scale and flow properties of each group were examined and the effect of length scale on rheological properties was investigated.  Critical elements there were identified include:  • Use of the appropriate viscosity value for the fluid through which the dispersed phase diffuses. It is often assumed that the viscosity of the pure continuous phase fluid can be used as the reference viscosity in the Stokes equation. In a real system the viscosity of the continuous phase can be strongly affected, and thereby defined by, the presence of the dispersed phase itself and the interfacial layer. Hence it is paramount that the appropriate reference viscosity is used. It is noted that the standard assumption is often applicable for highly diluted suspensions that are composed of rigid spheres. However, the research undertaken here demonstrates that this assumption must be reconsidered for more concentrated systems and particularly for emulsions. We recommend that for such systems the viscosity of the pure continuous phase is replaced by the constant viscosity of the sample at a zero shear rate.  • Consideration of structural factors that also affect the viscosity. In particular it is often assumed that: 1- the droplets/particles are spherical and non-deformable; and 2- the dispersed phase presents as a single length scale, i.e. the system is a monodisperse system. The inclusion of these assumptions limits dramatically the applicability of the available models to fit and describe the real flow behaviour and thereby does not allow for predictability of behaviours. Typically models have been modified by adding experimental factors rather than explicitly incorporating the above factors into the development of a model. In this work the deviation from these rheological models are explained and correlated to the deviation from spherical structure and monodispersity.  • Defining the relative viscosity as the ratio between the sample viscosity and the reference viscosity is common practice in the application of most rheological models. The viscosity of water tends to be taken as the reference viscosity. This leads to no agreement between the well-known rheological models and the experimental data, especially when applied to analysis of microemulsion rheology. In this work, we show that by taking the viscosity of the relevant ternary surfactant solution as the reference viscosity, the existing models can be applicable to microemulsions.  This work sheds light on the relationship between the non-Newtonian behaviour of nanoemulsions and their underlying thermodynamic instability. In these systems the Newtonian behaviour is not evident till a shear rate of 100/s is reached. On the other hand the Newtonian viscosity is observed in thermodynamically stable systems, e.g. surfactant solutions and microemulsions, beyond a shear rate of 5/s or less. The Newtonian region also was observed in normal emulsions with narrow size distributions, dilute monodisperse coarse emulsions or dilute normal emulsions prepared in a Warring blender while a short chain alcohol is added to the system. By adding the short chain alcohol to the system not only the densities of the two phases are made similar and the emulsification is eased but also the polydispersity of the final emulsion is decreased.  Finally a single model to be applicable to different types of emulsions with droplet sizes over five orders of magnitude was proposed. However the relationship is applicable to the systems with a low degree of polydispersity and once polydispersity is introduced the flow behaviour becomes complicated and the proposed model is not applicable.</p>


2021 ◽  
Author(s):  
◽  
Mehrdad Ghahraee

<p>Flow properties of a complex fluid depend on not only the characterizations of the components that make up the system but also the interactions between the phases. One of the most significant factors that affect these interactions is the length scale of the dispersed phase. According to Stokes law, the root of complex fluid rheological models, the velocity of a moving particle in a fluid is a function of the viscosity of the fluid and also the size of the moving droplet. The main aim of this research is to understand the crucial elements that define and control the rheological behaviour of complex fluids and thereby provide evidence for proposed modifications of the available rheological models to include parameters that capture the deduced crucial elements. In particular, by adjusting different aspects of Stokes law. The modified models can then be applied to a wider range of complex fluid systems, including emulsions, regardless of the chemicals that form the system.  The complex fluids used in this research to develop the above are emulsions with droplets ranging over four orders of magnitude, 10 nm to 100 µm. Within a single base chemical system microemulsions, nanoemulsions and macroemulsions could be formed. The length scale and flow properties of each group were examined and the effect of length scale on rheological properties was investigated.  Critical elements there were identified include:  • Use of the appropriate viscosity value for the fluid through which the dispersed phase diffuses. It is often assumed that the viscosity of the pure continuous phase fluid can be used as the reference viscosity in the Stokes equation. In a real system the viscosity of the continuous phase can be strongly affected, and thereby defined by, the presence of the dispersed phase itself and the interfacial layer. Hence it is paramount that the appropriate reference viscosity is used. It is noted that the standard assumption is often applicable for highly diluted suspensions that are composed of rigid spheres. However, the research undertaken here demonstrates that this assumption must be reconsidered for more concentrated systems and particularly for emulsions. We recommend that for such systems the viscosity of the pure continuous phase is replaced by the constant viscosity of the sample at a zero shear rate.  • Consideration of structural factors that also affect the viscosity. In particular it is often assumed that: 1- the droplets/particles are spherical and non-deformable; and 2- the dispersed phase presents as a single length scale, i.e. the system is a monodisperse system. The inclusion of these assumptions limits dramatically the applicability of the available models to fit and describe the real flow behaviour and thereby does not allow for predictability of behaviours. Typically models have been modified by adding experimental factors rather than explicitly incorporating the above factors into the development of a model. In this work the deviation from these rheological models are explained and correlated to the deviation from spherical structure and monodispersity.  • Defining the relative viscosity as the ratio between the sample viscosity and the reference viscosity is common practice in the application of most rheological models. The viscosity of water tends to be taken as the reference viscosity. This leads to no agreement between the well-known rheological models and the experimental data, especially when applied to analysis of microemulsion rheology. In this work, we show that by taking the viscosity of the relevant ternary surfactant solution as the reference viscosity, the existing models can be applicable to microemulsions.  This work sheds light on the relationship between the non-Newtonian behaviour of nanoemulsions and their underlying thermodynamic instability. In these systems the Newtonian behaviour is not evident till a shear rate of 100/s is reached. On the other hand the Newtonian viscosity is observed in thermodynamically stable systems, e.g. surfactant solutions and microemulsions, beyond a shear rate of 5/s or less. The Newtonian region also was observed in normal emulsions with narrow size distributions, dilute monodisperse coarse emulsions or dilute normal emulsions prepared in a Warring blender while a short chain alcohol is added to the system. By adding the short chain alcohol to the system not only the densities of the two phases are made similar and the emulsification is eased but also the polydispersity of the final emulsion is decreased.  Finally a single model to be applicable to different types of emulsions with droplet sizes over five orders of magnitude was proposed. However the relationship is applicable to the systems with a low degree of polydispersity and once polydispersity is introduced the flow behaviour becomes complicated and the proposed model is not applicable.</p>


2021 ◽  
Author(s):  
◽  
Emma Yvonne Simons

<p>Human-induced climate change is already having an acute impact on many lives and livelihoods. This is expected to escalate, especially for “disadvantaged people and communities in countries at all levels of development” (Pachauri et al., 2014, p. 13). This thesis is situated within post- and critical development, enabling critique of mainstream development alongside the exploration of alternative, bottom-up forms of development, such as social movements. Following a social constructionist epistemology, it utilises qualitative methodologies (in-person and virtual in-depth interviews) to navigate the complex, fluid, and subjective field of climate justice. This research situates the emerging climate justice movements in Aotearoa as key to understanding how radical, progressive societal change is articulated in the contemporary era to mitigate and adapt to anthropogenic climate change. Several core themes emerge as part of the research, including how various actors (organisations, sub-movements, and individuals) relate to each other and the world around them. This research asks and addresses not only what climate justice is in Aotearoa and who is involved, but also which theories of change operate within these emerging social movements? The data in this research outlines that climate justice movements in Aotearoa are accessible, inclusive, relational, accountable and frontline community-led, the antithesis of the current dominant structures and systems of society. These movements build upon other rights and justice movements, notably: Indigenous justice, disability justice, intersectional feminism, workers’ rights, and intergenerational justice. The development and negotiation of a collective climate justice identity is shaped by several interconnected tensions: partisanship versus non-partisanship, internal conformity versus diversity, and ecosystem versus ‘egosystem’. These tensions can also impede connection and understanding, at times leading to substantial harm to individuals, communities, and climate justice more broadly. This thesis outlines multiple forces shaping the actualisation of justice in an Aotearoa experiencing climate change. Fundamentally, this thesis highlights that climate justice is an ongoing journey of relationships and negotiations that “move at the speed of trust”.</p>


2021 ◽  
Author(s):  
◽  
Emma Yvonne Simons

<p>Human-induced climate change is already having an acute impact on many lives and livelihoods. This is expected to escalate, especially for “disadvantaged people and communities in countries at all levels of development” (Pachauri et al., 2014, p. 13). This thesis is situated within post- and critical development, enabling critique of mainstream development alongside the exploration of alternative, bottom-up forms of development, such as social movements. Following a social constructionist epistemology, it utilises qualitative methodologies (in-person and virtual in-depth interviews) to navigate the complex, fluid, and subjective field of climate justice. This research situates the emerging climate justice movements in Aotearoa as key to understanding how radical, progressive societal change is articulated in the contemporary era to mitigate and adapt to anthropogenic climate change. Several core themes emerge as part of the research, including how various actors (organisations, sub-movements, and individuals) relate to each other and the world around them. This research asks and addresses not only what climate justice is in Aotearoa and who is involved, but also which theories of change operate within these emerging social movements? The data in this research outlines that climate justice movements in Aotearoa are accessible, inclusive, relational, accountable and frontline community-led, the antithesis of the current dominant structures and systems of society. These movements build upon other rights and justice movements, notably: Indigenous justice, disability justice, intersectional feminism, workers’ rights, and intergenerational justice. The development and negotiation of a collective climate justice identity is shaped by several interconnected tensions: partisanship versus non-partisanship, internal conformity versus diversity, and ecosystem versus ‘egosystem’. These tensions can also impede connection and understanding, at times leading to substantial harm to individuals, communities, and climate justice more broadly. This thesis outlines multiple forces shaping the actualisation of justice in an Aotearoa experiencing climate change. Fundamentally, this thesis highlights that climate justice is an ongoing journey of relationships and negotiations that “move at the speed of trust”.</p>


2021 ◽  
Vol 89 (3) ◽  
Author(s):  
Cipriano Escalante Sánchez ◽  
Enrique D. Fernández-Nieto ◽  
Tomás Morales de Luna ◽  
Yohan Penel ◽  
Jacques Sainte-Marie

AbstractIn some configurations, dispersion effects must be taken into account to improve the simulation of complex fluid flows. A family of free-surface dispersive models has been derived in Fernández-Nieto et al. (Commun Math Sci 16(05):1169–1202, 2018). The hierarchy of models is based on a Galerkin approach and parameterised by the number of discrete layers along the vertical axis. In this paper we propose some numerical schemes designed for these models in a 1D open channel. The cornerstone of this family of models is the Serre – Green-Naghdi model which has been extensively studied in the literature from both theoretical and numerical points of view. More precisely, the goal is to propose a numerical method for the $$LDNH_2$$ L D N H 2 model that is based on a projection method extended from the one-layer case to any number of layers. To do so, the one-layer case is addressed by means of a projection-correction method applied to a non-standard differential operator. A special attention is paid to boundary conditions. This case is extended to several layers thanks to an original relabelling of the unknowns. In the numerical tests we show the convergence of the method and its accuracy compared to the $$LDNH_0$$ L D N H 0 model.


Sign in / Sign up

Export Citation Format

Share Document