Cognitive Architecture Based Platform on Human Performance Evaluation for Space Manual Control Task

Author(s):  
Yanfei Liu ◽  
Zhiqiang Tian ◽  
Yuzhou Liu ◽  
Junsong Li ◽  
Feng Fu
2012 ◽  
Vol 6 (1) ◽  
pp. 57-87 ◽  
Author(s):  
Dietrich Manzey ◽  
Juliane Reichenbach ◽  
Linda Onnasch

Two experiments are reported that investigate to what extent performance consequences of automated aids are dependent on the distribution of functions between human and automation and on the experience an operator has with an aid. In the first experiment, performance consequences of three automated aids for the support of a supervisory control task were compared. Aids differed in degree of automation (DOA). Compared with a manual control condition, primary and secondary task performance improved and subjective workload decreased with automation support, with effects dependent on DOA. Performance costs include return-to-manual performance issues that emerged for the most highly automated aid and effects of complacency and automation bias, respectively, which emerged independent of DOA. The second experiment specifically addresses how automation bias develops over time and how this development is affected by prior experience with the system. Results show that automation failures entail stronger effects than positive experience (reliably working aid). Furthermore, results suggest that commission errors in interaction with automated aids can depend on three sorts of automation bias effects: (a) withdrawal of attention in terms of incomplete cross-checking of information, (b) active discounting of contradictory system information, and (c) inattentive processing of contradictory information analog to a “looking-but-not-seeing” effect.


1984 ◽  
Vol 28 (4) ◽  
pp. 398-402
Author(s):  
M. A. Montazer ◽  
Colin G. Drury

A model which describes human performance in a self-paced tracking task was developed based on the notion that human operators are intermittent-acting or sampled-data servo-mechanisms. The model had a functional form in terms of the probability of success and failure resulting from the execution of a manual control task such as drawing a line between fixed boundaries. The human operator was modelled as an optimizer, balancing costs and penalties of speeds and errors to achieve a maximum expected payoff. The performance of the model was evaluated by simulating a line drawing task on a digital computer. Model predictions obtained via simulation were compared with the data collected from human subjects performing the actual task in a laboratory setting. The predictions of the model were confirmed, suggesting that human operators can in fact be modelled as optimizers when performing a manual control task.


2011 ◽  
Author(s):  
Yukio Horiguchi ◽  
Keisuke Yasuda ◽  
Hiroaki Nakanishi ◽  
Tetsuo Sawaragi
Keyword(s):  

1994 ◽  
Vol 33 (04) ◽  
pp. 390-396 ◽  
Author(s):  
J. G. Stewart ◽  
W. G. Cole

Abstract:Metaphor graphics are data displays designed to look like corresponding variables in the real world, but in a non-literal sense of “look like”. Evaluation of the impact of these graphics on human problem solving has twice been carried out, but with conflicting results. The present experiment attempted to clarify the discrepancies between these findings by using a complex task in which expert subjects interpreted respiratory data. The metaphor graphic display led to interpretations twice as fast as a tabular (flowsheet) format, suggesting that conflict between earlier studies is due either to differences in training or to differences in goodness of metaphor, Findings to date indicate that metaphor graphics work with complex as well as simple data sets, pattern detection as well as single number reporting tasks, and with expert as well as novice subjects.


2018 ◽  
Vol 120 (6) ◽  
pp. 3187-3197 ◽  
Author(s):  
Marissa J. Rosenberg ◽  
Raquel C. Galvan-Garza ◽  
Torin K. Clark ◽  
David P. Sherwood ◽  
Laurence R. Young ◽  
...  

Precise motion control is critical to human survival on Earth and in space. Motion sensation is inherently imprecise, and the functional implications of this imprecision are not well understood. We studied a “vestibular” manual control task in which subjects attempted to keep themselves upright with a rotational hand controller (i.e., joystick) to null out pseudorandom, roll-tilt motion disturbances of their chair in the dark. Our first objective was to study the relationship between intersubject differences in manual control performance and sensory precision, determined by measuring vestibular perceptual thresholds. Our second objective was to examine the influence of altered gravity on manual control performance. Subjects performed the manual control task while supine during short-radius centrifugation, with roll tilts occurring relative to centripetal accelerations of 0.5, 1.0, and 1.33 GC (1 GC = 9.81 m/s2). Roll-tilt vestibular precision was quantified with roll-tilt vestibular direction-recognition perceptual thresholds, the minimum movement that one can reliably distinguish as leftward vs. rightward. A significant intersubject correlation was found between manual control performance (defined as the standard deviation of chair tilt) and thresholds, consistent with sensory imprecision negatively affecting functional precision. Furthermore, compared with 1.0 GC manual control was more precise in 1.33 GC (−18.3%, P = 0.005) and less precise in 0.5 GC (+39.6%, P < 0.001). The decrement in manual control performance observed in 0.5 GC and in subjects with high thresholds suggests potential risk factors for piloting and locomotion, both on Earth and during human exploration missions to the moon (0.16 G) and Mars (0.38 G). NEW & NOTEWORTHY The functional implications of imprecise motion sensation are not well understood. We found a significant correlation between subjects’ vestibular perceptual thresholds and performance in a manual control task (using a joystick to keep their chair upright), consistent with sensory imprecision negatively affecting functional precision. Furthermore, using an altered-gravity centrifuge configuration, we found that manual control precision was improved in “hypergravity” and degraded in “hypogravity.” These results have potential relevance for postural control, aviation, and spaceflight.


Sign in / Sign up

Export Citation Format

Share Document