control precision
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 50)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
pp. 842-858
Author(s):  
Segun Aina ◽  
Samuel Dayo Okegbile ◽  
Perfect Makanju ◽  
Adeniran Ishola Oluwaranti

The need to remotely control home appliances is an important aspect of home automation and is now receiving lot of attentions in the literature. The works so far are still at a development level making further research necessary. This article presents a framework for chatbot-controlled home appliance control system and was implemented by programming a Raspberry Pi using the Python language while the chatbot server was also implemented using a Node.js on JavaScript. The Raspberry Pi was connected to the chatbot server via Wi-Fi using a websockets protocol. The chatbot server is linked to Facebook Messenger using the Messenger Application Protocol Interface. Messages received at the chatbot server are analyzed with RasaNLU to classify the user's intention and extract necessary information which are sent over websocket to the connected Raspberry pi. The system was evaluated using control precision and percentage correct classification with both producing a significant level of acceptance. This work produced a Facebook Messenger chatbot-based framework capable of controlling Home Appliances remotely.


Actuators ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Xinyu Fan ◽  
Jie Yin ◽  
Qinfen Lu

Electromagnetic linear actuators, as key executive components, have a vital impact on the performance of fully flexible variable valve trains. Considering that the conventional moving coil electromagnetic linear actuator (MCELA) has the disadvantages of low force density and a lack of end-passive self-holding ability, a novel composited electromagnetic linear actuator (CELA) is proposed by combining the performance advantages of MCELA and moving iron electromagnetic linear actuator (MIELA) in this work. Firstly, the structure and magnetic circuit design scheme of the proposed actuator are introduced and the finite element simulation model is established. The magnetic field distribution and force characteristics of the actuators are assessed by finite element simulation. Secondly, the construction of the prototype of the actuator is outlined, based on which the feasibility of the design scheme and the steady-state performance of the actuator are verified. Finally, the coordinated control strategy is proposed to realize the multi motion coordination control of the actuator. The research results show that the maximum starting force of the CELA with the end-passive self-holding ability is 574.92 N while the holding force can approach 229.25 N. Moreover, the CELA is proven to have excellent dynamic characteristics and control precision under different motion modes and to have an improved adaptability to the complex working conditions of internal combustion engines.


2021 ◽  
Author(s):  
Shannon W. Anderson ◽  
Mandy M. Cheng ◽  
Yee Shih Phua

We investigate whether prior collaboration experience affects a focal partner’s response to the precision of monitoring controls adopted by a new partner, with consequences for their goodwill trust in, and subsequent cooperation with, the new partner. We expect the partner to interpret their new partner’s adoption of precise monitoring controls as either an effort to limit their autonomy or to reduce information asymmetry. The partner’s experience with past partners is posited to determine which interpretation is salient, with negative (positive) experiences favoring the former (latter). We find that partners with an uncooperative (cooperative) experience exhibit lower (higher) goodwill trust in the new partner when controls are more precise. Further, prior experience moderates the indirect relation between the precision of monitoring controls and partner cooperation acting through goodwill trust. The results demonstrate the importance of prior experiences in the design of interfirm controls for current partner relationships.


2021 ◽  
pp. 158-165
Author(s):  
А.С. Коренев ◽  
С.П. Хабаров ◽  
А.Г. Шпекторов

Рассматривается проблема определения маршрута движения безэкипажного судна с учетом жестких требований контроля положения и курса судна. Современные электронно-картографические навигационно-информационные системы в режиме управления траекторией определяют точку поворота для выхода на новый участок маршрута, что недостаточно для управления безэкипажным судном в автономном режиме. Для повышения точности предложено проводить расчет траектории движения безэкипажного судна в географических координатах c учетом движения судна по радиусу поворота между участками траектории без перевода в прямоугольную систему координат. Показано, что при движении в свободной акватории проблема может быть сведена к решению обратной геодезической задачи. Предложен универсальный алгоритм расчета траектории в виде сегментов дуг большого круга, позволяющий получить путевые точки маршрута с любой заданной точностью. В случае возникновения ограничений на движение между двумя участками по внутреннему радиусу необходимо рассчитать альтернативный маршрут обхода препятствия. Для данного случая предложен расчетный маневр, полученный на основе решения задачи Дубинса. Альтернативный маршрут формируется в виде последовательности криволинейных сегментов, соответствующих заданному радиусу поворота. Алгоритм расчета путевых точек позволяет получить траекторию обхода препятствия с любой степенью детализации. A route calculation problem for unmanned vessels is investigated according to the control position and course high requirements. Present day electronic chart display and information systems (ECDIS) operating on the track control regime provide wheel-of-point calculation to course changing. It is not enough to control unmanned ship on the route in the autonomous mode. To increase control precision a new route calculation routine is suggested. The routine provides route calculation in the geodesic coordinates without Cartesian reference system mapping. It is shown that in the empty water the routine can be reduced to an inverse survey computation. A universal route calculation algorithm providing great circle arc segmentation with any given accuracy is suggested. In the case of course changing restricted area, it is needed to calculate an alternate route for obstacle or collision avoidance. The algorithm of alternate route calculation based on Dubins problem solution is applied. The route is found as a sequence of great circle arcs according to the ship turn radius. The shown algorithm allows finding avoidance route waypoints with any given resolution.


Author(s):  
Yanjun Xiao ◽  
Zeyu Li ◽  
Zhe Mao ◽  
Wei Zhou

The intelligent control strategy of electromagnetic clutch actuator is analyzed in detail in this paper. The start - stop control of the loom is realized by an electromagnetic clutch. The existing control method of electromagnetic clutch of loom is high and low pressure control strategy. The operator sets the braking advance angle according to experience, to realize the accurate braking of the spindle, but it is difficult to realize the fast and accurate control. In order to achieve good performance, it is very important to develop a fast and accurate loom braking system. Aiming at the fabric defects caused by the elongation of the warp when the loom is stopped, a method of stabilizing the excitation current of the electromagnetic clutch by using the neural adaptive PID (proportional integral differential) controller is proposed to improve the control precision of the actuator. The experimental results show that the proposed control algorithm is feasible and can effectively realize the adaptive control of the spindle braking Angle within the allowable error range.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1920
Author(s):  
Jikang Xu ◽  
Ruichuan Li ◽  
Yanchao Li ◽  
Yisheng Zhang ◽  
Huilai Sun ◽  
...  

To improve the quality and control accuracy of the farming tractor electro-hydraulic hitch system, a variable-universe fuzzy control algorithm is introduced herein based on force–position mixed adjustment. (1) Background: This research sought to improve the operation quality and control precision of the tractor electro-hydraulic suspension operation system by solving the slow response and low precision problems in the target value control of the system. (2) Methods: According to the characteristics of the operating system, the working principle is discussed. The variable-universe fuzzy controller and the control module were designed based on MC9S12XS128. At the same time, we used Matlab/Simulink to study the step response, and field tests were carried out based on the existing test conditions. (3) Results: In the response stage, the variable-universe fuzzy control only needs 5.85 s, and there is no overshoot problem; in the normal tillage stage, the maximum tillage depth difference is only 1.6 cm, and the traction force is 428 N, which is closer to the expected value. (4) Conclusions: The farming quality and efficiency of the operating system were improved. Additionally, the operating system can also provide technical support for intelligent agricultural machinery and the field management mode in the future.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 111
Author(s):  
Danilo Avola ◽  
Daniele Pannone

In recent years, small-scale drones have been used in heterogeneous tasks, such as border control, precision agriculture, and search and rescue. This is mainly due to their small size that allows for easy deployment, their low cost, and their increasing computing capability. The latter aspect allows for researchers and industries to develop complex machine- and deep-learning algorithms for several challenging tasks, such as object classification, object detection, and segmentation. Focusing on segmentation, this paper proposes a novel deep-learning model for semantic segmentation. The model follows a fully convolutional multistream approach to perform segmentation on different image scales. Several streams perform convolutions by exploiting kernels of different sizes, making segmentation tasks robust to flight altitude changes. Extensive experiments were performed on the UAV Mosaicking and Change Detection (UMCD) dataset, highlighting the effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Sai Zhang ◽  
Zhen Yang

In this paper, a bounded finite-time control strategy is developed for the final proximity maneuver of spacecraft rendezvous and docking exposed to external disturbance and input quantization. To realize the integrated control for spacecraft final proximity operation, the coupling kinematics and dynamics of attitude and position are modeled by feat of Lie group SE 3 . With a view to improving the convergence rate and reducing the chattering, an adaptive finite-time controller is proposed for the error tracking system with one-step theoretical proof of stability. Meanwhile, the hysteresis logarithmic quantizer is implemented to effectively reduce the frequency of data transmission and the quantization errors are reduced under the proposed controller. The algorithms outlined above are based on an integrated model expressed by SE 3 and denoted by uniform motion states, which can simplify the design progress and improve control precision. Finally, simulations are provided to exhibit the effectiveness and advantages of the designed strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pokpong Amornvit ◽  
Dinesh Rokaya ◽  
Sasiwimol Sanohkan

There have been various developments in intraoral 3D scanning technology. This study is aimed at investigating the accuracy of 10 scanners developed from 2015 to 2020. A maxillary dental model with reference points was printed from Form 2 (FormLabs, Somerville, MA, USA). The model was scanned 5 times with each intraoral scanner (IOS); Trios 3 (normal and high-resolution mode); Trios 4 (normal and high-resolution mode) (3Shape Trios A/S, Copenhagen, Denmark); iTero Element, iTero 2, and iTero 5D Element (Align Technologies, San Jose, California, USA); Dental Wings (Dental Wings, Montreal QC, Canada); Panda 2 (Pengtum Technologies, Shanghai, China); Medit i500 (Medit Corp. Seoul, South Korea); Planmeca Emerald™ (Planmeca, Helsinki, Finland); and Aoralscan (Shining 3D Tech. Co., Ltd., Hangzhou, China). After the scan, the 3D scanned stereolithography files were created. The various distances were measured five times in X , Y , Z , and X Y axes of various scans and with a vernier caliper (control) and from the Rhinoceros software. The data were analyzed using SPSS 18. Test for the normality of the various measurement data were done using Kolmogorov-Smirnov test. The trueness and precision of the measurements were compared among the various scans using the Kruskal-Wallis test. The significance was considered at P < 0.05 . The trueness of the intraoral scans was analyzed by comparing the measurements from the control. Precision was tested through the measurements of repeated scans. It showed that more the distance is less the accuracy for all scanners. In all studied scanners, the trueness varied but precision was favorably similar. Diagonal scanning showed less accuracy for all the scanners. Hence, when scanning the full arch, the dentist needs to take more caution and good scan pattern. Trios series showed the best scan results compared to other scanners.


2021 ◽  
pp. 1-25
Author(s):  
Yuhan Ji ◽  
Weihai Chen ◽  
Jianbin Zhang ◽  
Zhongyi Li ◽  
Zaojun Fang ◽  
...  

Abstract The upper limb rehabilitation exoskeleton with cable-driven parallel structure has the advantages of light weight and large payload, etc. However, due to the non-rigid nature of the actuating cables and the different body shape of the wearer, the geometric parameters of the exoskeleton have a large error. The parameter identification of cable-driven exoskeleton is of great significance. An asynchronous self-identification method for the upper limb 7-DOF (Degree of freedom) cable-driven exoskeleton was proposed and used in a wearable multi-redundant exoskeleton. Asynchronous iteration eliminates the accumulation of joint errors. High identification reliability is achieved by selecting proper identification parameters and optimizing error model.With the method, the geometric parameters of the exoskeleton can be identified by using exoskeleton joint Angle and cable length data. The experiment verifies that the success rate of parameter identification for different wearers is in line with expectations, and the control precision and stability of the prototype are greatly improved after parameter identification.


Sign in / Sign up

Export Citation Format

Share Document