On the Blocking Probability and Loss Rates in Nonpreemptive Oscillating Queueing Systems

Author(s):  
Fátima Ferreira ◽  
António Pacheco ◽  
Helena Ribeiro
2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
G. M. Gontijo ◽  
G. S. Atuncar ◽  
F. R. B. Cruz ◽  
L. Kerbache

We extend the analysis of queueing systems for real-life situations, where the arrival pattern of customers is unknown. In real systems, we must understand how the choice of a method of estimation influences the configuration of the system. Using kernel smoothing, we evaluate algorithms to estimate performance measures of a system, including the invariant probability distribution of the number of customers in the system, the blocking probability, the average queue size, and the average client queue time. We successfully apply the method to the arrivals to a call center to plan and improve the performance of these important queueing systems.


Ports 2010 ◽  
2010 ◽  
Author(s):  
Rolf Schottle ◽  
Katherine Prickett
Keyword(s):  
Ex Situ ◽  

2008 ◽  
Vol 1 (1) ◽  
pp. 43-54
Author(s):  
Basra Sultana ◽  
Mamun-ur-Rashid Khandker

Vertically stacked optical banyan (VSOB) networks are attractive for serving as optical switching systems due to the desirable properties (such as the small depth and self-routing capability) of banyan network structures. Although banyan-type networks result in severe blocking and crosstalk, both these problems can be minimized by using sufficient number of banyan planes in the VSOB network structure. The number of banyan planes is minimum for rearrangeably nonblocking and maximum for strictly nonblocking structure. Both results are available for VSOB networks when there exist no internal link-failures. Since the issue of link-failure is unavoidable, we intend to find the minimum number of planes required to make a VSOB network nonblocking when some links are broken or failed in the structure. This paper presents the approximate number of planes required to make a VSOB networks rearrangeably nonblocking allowing link-failures. We also show an interesting behavior of the  blocking  probability of a faulty VSOB networks that the blocking probability may not  always  increase monotonously with  the  increase  of  link-failures; blocking probability  decreases  for  certain range of  link-failures, and then increases again. We believe that such fluctuating behavior of blocking probability with the increase of link failure probability deserves special attention in switch design.  Keywords: Banyan networks; Blocking probability; Switching networks; Vertical stacking; Link-failures. © 2009 JSR Publications. ISSN: 2070-0237(Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i1.1070


Author(s):  
Viktor Afonin ◽  
Vladimir Valer'evich Nikulin

The article focuses on attempt to optimize two well-known Markov systems of queueing: a multichannel queueing system with finite storage, and a multichannel queueing system with limited queue time. In the Markov queuing systems, the intensity of the input stream of requests (requirements, calls, customers, demands) is subject to the Poisson law of the probability distribution of the number of applications in the stream; the intensity of service, as well as the intensity of leaving the application queue is subject to exponential distribution. In a Poisson flow, the time intervals between requirements are subject to the exponential law of a continuous random variable. In the context of Markov queueing systems, there have been obtained significant results, which are expressed in the form of analytical dependencies. These dependencies are used for setting up and numerical solution of the problem stated. The probability of failure in service is taken as a task function; it should be minimized and depends on the intensity of input flow of requests, on the intensity of service, and on the intensity of requests leaving the queue. This, in turn, allows to calculate the maximum relative throughput of a given queuing system. The mentioned algorithm was realized in MATLAB system. The results obtained in the form of descriptive algorithms can be used for testing queueing model systems during peak (unchanged) loads.


Author(s):  
Costis Maglaras ◽  
John Yao ◽  
Assaf Zeevi

2020 ◽  
Author(s):  
Yaroslav Rosokha ◽  
Chen Wei
Keyword(s):  

Author(s):  
Abubakar Muhammad Miyim ◽  
Mahamod Ismail ◽  
Rosdiadee Nordin

The importance of network selection for wireless networks, is to facilitate users with various personal wireless devices to access their desired services via a range of available radio access networks. The inability of these networks to provide broadband data service applications to users poses a serious challenge in the wireless environment. Network Optimization has therefore become necessary, so as to accommodate the increasing number of users’ service application demands while maintaining the required quality of services. To achieve that, the need to incorporate intelligent and fast mechanism as a solution to select the best value network for the user arises. This paper provides an intelligent network selection strategy based on the user- and network-valued metrics to suit their preferences when communicating in multi-access environment. A user-driven network selection strategy that employs Multi-Access Service Selection Vertical Handover Decision Algorithm (MASS-VHDA) via three interfaces; Wi-Fi, WiMAX and LTE-A is proposed, numerically evaluated and simulated. The results from the performance analysis demonstrate some improvement in the QoS and network blocking probability to satisfy user application requests for multiple simultaneous services.


Sign in / Sign up

Export Citation Format

Share Document