scholarly journals A DTMC Model for Performance Evaluation of Irregular Interconnection Networks with Asymmetric Spatial Traffic Distributions

Author(s):  
Daniel Lüdtke ◽  
Dietmar Tutsch
2020 ◽  
Vol 31 (02) ◽  
pp. 233-252
Author(s):  
Yuejuan Han ◽  
Lantao You ◽  
Cheng-Kuan Lin ◽  
Jianxi Fan

The topology properties of multi-processors interconnection networks are important to the performance of high performance computers. The hypercube network [Formula: see text] has been proved to be one of the most popular interconnection networks. The [Formula: see text]-dimensional locally twisted cube [Formula: see text] is an important variant of [Formula: see text]. Fault diameter and wide diameter are two communication performance evaluation parameters of a network. Let [Formula: see text]), [Formula: see text] and [Formula: see text] denote the diameter, the [Formula: see text] fault diameter and the wide diameter of [Formula: see text], respectively. In this paper, we prove that [Formula: see text] if [Formula: see text] is an odd integer with [Formula: see text], [Formula: see text] if [Formula: see text] is an even integer with [Formula: see text].


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Dimitris Vasiliadis ◽  
George Rizos ◽  
Costas Vassilakis

The performance of Multistage Interconnection Networks (MINs) under hotspot traffic, where some percentage of the traffic is targeted at single nodes, which are also called hot spots, is of crucial interest. The prioritizing of packets has already been proposed at previous works as alleviation to the tree saturation problem, leading to a scheme that natively supports 2-class priority traffic. In order to prevent hotspot traffic from degrading uniform traffic we expand previous studies by introducing multilayer Switching Elements (SEs) at last stages in an attempt to balance between MIN performance and cost. In this paper the performance evaluation of dual-priority, double-buffered, multilayer MINs under single hotspot setups is presented and analyzed using simulation experiments. The findings of this paper can be used by MIN designers to optimally configure their networks.


Sign in / Sign up

Export Citation Format

Share Document