multicast traffic
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 23)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
maneesh pant ◽  
Brijmohan Singh ◽  
Dharam Vir Gupta

Abstract The growing and widespread presence of Internet of Things (IoT) has made the lives of all comfortable and handy, but poses various challenges, like efficiency, security, and high energy drain, threatening smart IoT-based applications. Small applications rely on Unicast communication. In a group-oriented communication, multicast is better as transmission takes place using fewer resources. Therefore, many IoT applications rely on multicast transmission. To handle sensitive applications, the multicast traffic requires an actuator control. Securing multicast traffic by itself is cumbersome, as it expects an efficient and flexible Group Key Establishment (GKE) protocol. The paper proposes a three-tier model that can control the IoT and control multicast communications. The first authentication is at network linking where we used a 256-bit keyless encryption technique. Machine learning-based chaotic map key generation authenticates the GKE. Finally, MD5 establishes the system key. 3S-IoT is smart to detect any tempering with the devices. It stores signatures of the connected devices. The algorithm reports any attempt to change or temper a device. 3S-IoT can thwart attacks such as Distributed Denial of Service (DDoS), Man-in-the-Middle (MiTM), phishing, and more. We calculated energy consumed, bandwidth, and the time taken to check the robustness of the proposed model. The results establish that 3S-IoT can efficiently deal with the attacks. The paper compares 3S-IoT with Benchmark algorithms.


2021 ◽  
pp. 1-13
Author(s):  
Nadezhda Chukhno ◽  
Olga Chukhno ◽  
Sara Pizzi ◽  
Antonella Molinaro ◽  
Antonio Iera ◽  
...  

2020 ◽  
Author(s):  
Maneesh Pant ◽  
Brij Mohan Singh ◽  
Dharam Vir Gupta

Abstract Internet of Things (IoT) evolving and widespread presence has made the lives of all comfortable and handy, while on the other hand posing various challenges, i.e. less efficiency, less security, and high energy drain, threatening smart IoT-based applications. Compared to unicast communication, multicast communication is considered more powerful in group-oriented systems, because transmission takes place using less resources. This is why many of the IoT applications rely on multicast in their transmission. This multicast traffic needs to be handled explicitly for sensitive applications requiring actuator control. Securing multicast traffic by itself is cumbersome as it requires an efficient and flexible Group Key Establishment (GKE) protocol. We propose a three-tier model that can, not only be used to control the IoT, but also to control multicast communications. The architecture is built with a 256-bit keyless encryption technique to protect the authentication to create the network link. Machine learning-based chaotic map key generation is used to protect GKE. Finally, using MD5, the system key is authenticated. The algorithm is checked for energy used, bandwidth, and time taken. The proposed model is applied and evaluated against numerous benchmark attacks such as Distributed Denial of Service (DDoS), Man in the Middle and Fishing.


2020 ◽  
Vol 58 ◽  
pp. 102247
Author(s):  
Panchali Datta Choudhury ◽  
P.V. Rakesh Reddy ◽  
Bijoy Chand Chatterjee ◽  
Eiji Oki ◽  
Tanmay De

Sign in / Sign up

Export Citation Format

Share Document