Study on the Jet Formation During Dispersal of Solid Particles by Shock and Blast Waves

Author(s):  
V. Rodriguez ◽  
R. Saurel ◽  
G. Jourdan ◽  
L. Houas

The conservation equations for the flow field developed behind a spherical blast wave propagating into a dusty medium (gas seeded with small uniformly distributed solid particles) are formulated and solved numerically by using the random choice method. The solution was carried out for the following three cases: (1) the dust is uniformly distributed outside the exploding spherical diaphragm; (2) the dust is uniformly distributed inside the exploding spherical diaphragm; (3) the dust is uniformly distributed inside a spherical layer located outside the exploding spherical diaphragm. The solutions obtained were compared with a similar pure-gas case. It was found that the dust presence weakens the blast wave, i. e. the gas velocity, temperature and pressure immediately behind the blast-wave front were lower than those obtained in a similar pure-gas case. The presence of dust changed the flow field behind the blast wave. The typical blast-wave pressure signature (i. e. a monotonic reduction in the pressure after the jump across the blast-wave front) changed to a different shape. Now the pressure increases after the blast-wave front until it reaches a maximum value followed by a monotonic pressure reduction. The maximum pressure is attained between the blast-wave front and the contact surface. Higher values of total pressure are obtained in the dusty gas case. The initial uniform spatial distribution of the dust particles changed into a bell-shaped pattern with a pronounced peak. The development of the sharp maximum in the dust spatial-density distribution might be of interest in assessing the effects of atmospheric nuclear explosions.


1981 ◽  
Vol 25 (1-2) ◽  
pp. 21-30 ◽  
Author(s):  
SHMUEL EIDELMAN ◽  
YOEL OVED ◽  
ABRAHAM HASSON ◽  
ALEXANDER BURCAT
Keyword(s):  

Author(s):  
V. Rodriguez ◽  
G. Jourdan ◽  
C. Mariani ◽  
R. Saurel ◽  
J. -C. Loraud ◽  
...  

2012 ◽  
Vol 24 (9) ◽  
pp. 091109 ◽  
Author(s):  
David L. Frost ◽  
Yann Grégoire ◽  
Oren Petel ◽  
Samuel Goroshin ◽  
Fan Zhang

2008 ◽  
Vol 4 (1) ◽  
pp. 1-26
Author(s):  
Gábor Kalácska

Research was performed on the friction, wear and efficiency of plastic gears made of modern engineering polymers and their composites both in a clean environment (adhesive sliding surfaces) and in an environment contaminated with solid particles and dust (abrasive), with no lubrication at all. The purpose is to give a general view about the results of abrasive wear tests including seven soil types as abrasive media. At the first stage of the research silicious sand was applied between the meshing gears and the wear of plastic and steel gears was evaluated and analyzed from the point of different material properties (elongation at break, hardness, yield stress, modulus of elasticity) and its combinations. The different correlations between the experienced wear and material features are also introduced. At the second stage of the project the abrasive sand was replaced with different physical soil types. The abrasive wear of gears is plotted in the function of soil types. The results highlight on the considerable role of physical soil types on abrasive wear resistance and the conclusions contain the detailed wear resistance. The results offer a new tribology database for the operation and maintenance of agricultural machines with the opportunity of a better material selection according to the dominant soil type. This can finally result longer lifetime and higher reliability of wearing plastic/steel parts.


Equipment ◽  
2006 ◽  
Author(s):  
Aleksey V. Nenarokomov ◽  
O. M. Alifanov ◽  
E. A. Artioukhine ◽  
I. V. Repin

Sign in / Sign up

Export Citation Format

Share Document