Real-Time Sliding Mode Observer Estimator Integration in Hybrid Electric Vehicles Battery Management Systems

Author(s):  
Nicolae Tudoroiu ◽  
Liana Elefterie ◽  
Elena-Roxana Tudoroiu ◽  
Wilhelm Kecs ◽  
Maria Dobritoiu ◽  
...  
2021 ◽  
pp. 1-18
Author(s):  
Mojtaba Hassanzadeh ◽  
Zahra Rahmani

Abstract This paper presents a novel real-time energy management strategy (EMS) for plug-in hybrid electric vehicles (PHEVs), which combines the adaptive neuro-fuzzy inference system (ANFIS) and the model predictive control (MPC). A two-objective EMS with two state variables is defined by integrating the battery aging and fuel economy in the objective function. First, the dynamic programming (DP) approach is applied offline to obtain the globally optimal solutions. Then a real-time predictive EMS is proposed, in which DP carries out a moving-horizon optimization. Contrary to the charge-sustaining HEVs, the optimal trajectory of the battery state-of-charge (SOC) in PHEVs does not fluctuate around a constant level. Thus, determining the desired value of SOC for the real-time moving-horizon optimization is a challenging issue. Unlike the EMSs with a pre-determined reference for SOC, a trained ANFIS model constructs the real-time sub-optimal SOC trajectory in advance. Finally, the effectiveness of the proposed approach is shown through simulation. The proposed EMS is examined over multiple real-time driving cycles, and the results indicate that the total cost is increased compared to those unaware of battery aging. The real-time EMS is then compared to different approaches. While suboptimal, the proposed EMS is real-time implementable, and the results are found to be close enough to those of optimal controller, compared to the two other tested approaches.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Author(s):  
Dario Solis ◽  
Chris Schwarz

Abstract In recent years technology development for the design of electric and hybrid-electric vehicle systems has reached a peak, due to ever increasing restrictions on fuel economy and reduced vehicle emissions. An international race among car manufacturers to bring production hybrid-electric vehicles to market has generated a great deal of interest in the scientific community. The design of these systems requires development of new simulation and optimization tools. In this paper, a description of a real-time numerical environment for Virtual Proving Grounds studies for hybrid-electric vehicles is presented. Within this environment, vehicle models are developed using a recursive multibody dynamics formulation that results in a set of Differential-Algebraic Equations (DAE), and vehicle subsystem models are created using Ordinary Differential Equations (ODE). Based on engineering knowledge of vehicle systems, two time scales are identified. The first time scale, referred to as slow time scale, contains generalized coordinates describing the mechanical vehicle system that includs the chassis, steering rack, and suspension assemblies. The second time scale, referred to as fast time scale, contains the hybrid-electric powertrain components and vehicle tires. Multirate techniques to integrate the combined set of DAE and ODE in two time scales are used to obtain computational gains that will allow solution of the system’s governing equations for state derivatives, and efficient numerical integration in real time.


Sign in / Sign up

Export Citation Format

Share Document