Scaled Conjugate Gradient Learning for Quaternion-Valued Neural Networks

Author(s):  
Călin-Adrian Popa
Author(s):  
R. Sujatha ◽  
Jyotir Moy Chatterjee ◽  
Ishaani Priyadarshini ◽  
Aboul Ella Hassanien ◽  
Abd Allah A. Mousa ◽  
...  

AbstractAny nation’s growth depends on the trend of the price of fuel. The fuel price drifts have both direct and indirect impacts on a nation’s economy. Nation’s growth will be hampered due to the higher level of inflation prevailing in the oil industry. This paper proposed a method of analyzing Gasoline and Diesel Price Drifts based on Self-organizing Maps and Bayesian regularized neural networks. The US gasoline and diesel price timeline dataset is used to validate the proposed approach. In the dataset, all grades, regular, medium, and premium with conventional, reformulated, all formulation of gasoline combinations, and diesel pricing per gallon weekly from 1995 to January 2021, are considered. For the data visualization purpose, we have used self-organizing maps and analyzed them with a neural network algorithm. The nonlinear autoregressive neural network is adopted because of the time series dataset. Three training algorithms are adopted to train the neural networks: Levenberg-Marquard, scaled conjugate gradient, and Bayesian regularization. The results are hopeful and reveal the robustness of the proposed model. In the proposed approach, we have found Levenberg-Marquard error falls from − 0.1074 to 0.1424, scaled conjugate gradient error falls from − 0.1476 to 0.1618, and similarly, Bayesian regularization error falls in − 0.09854 to 0.09871, which showed that out of the three approaches considered, the Bayesian regularization gives better results.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 451 ◽  
Author(s):  
Yousef Abbaspour-Gilandeh ◽  
Masoud Fazeli ◽  
Ali Roshanianfard ◽  
Mario Hernández-Hernández ◽  
Iván Gallardo-Bernal ◽  
...  

In this study, artificial neural networks (ANNs) were used to predict the draft force of a rigid tine chisel cultivator. The factorial experiment based on the randomized complete block design (RCBD) was used to obtain the required data and to determine the factors affecting the draft force. The draft force of the chisel cultivator was measured using a three-point hitch dynamometer and data were collected using a DT800 datalogger. A recurrent back-propagation multilayer network was selected to predict the draft force of the cultivator. The gradient descent algorithm with momentum, Levenberg–Marquardt algorithm, and scaled conjugate gradient descent algorithm were used for network training. The tangent sigmoid transfer function was the activation functions in the layers. The draft force was predicted based on the tillage depth, soil moisture content, soil cone index, and forward speed. The results showed that the developed ANNs with two hidden layers (24 and 26 neurons in the first and second layers, respectively) with the use of the scaled conjugate gradient descent algorithm outperformed the networks developed with other algorithms. The average simulation accuracy and the correlation coefficient for the prediction of draft force of a chisel cultivator were 99.83% and 0.9445, respectively. The linear regression model had a much lower accuracy and correlation coefficient for predicting the draft force compared to the ANNs.


Sign in / Sign up

Export Citation Format

Share Document