conjugate gradient algorithm
Recently Published Documents


TOTAL DOCUMENTS

369
(FIVE YEARS 65)

H-INDEX

33
(FIVE YEARS 4)

Author(s):  
Mezher M. Abed ◽  
Ufuk Öztürk ◽  
Hisham M. Khudhur

The nonlinear conjugate gradient method is an effective technique for solving large-scale minimizations problems, and has a wide range of applications in various fields, such as mathematics, chemistry, physics, engineering and medicine. This study presents a novel spectral conjugate gradient algorithm (non-linear conjugate gradient algorithm), which is derived based on the Hisham–Khalil (KH) and Newton algorithms. Based on pure conjugacy condition The importance of this research lies in finding an appropriate method to solve all types of linear and non-linear fuzzy equations because the Buckley and Qu method is ineffective in solving fuzzy equations. Moreover, the conjugate gradient method does not need a Hessian matrix (second partial derivatives of functions) in the solution. The descent property of the proposed method is shown provided that the step size at meets the strong Wolfe conditions. In numerous circumstances, numerical results demonstrate that the proposed technique is more efficient than the Fletcher–Reeves and KH algorithms in solving fuzzy nonlinear equations.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jianbo Guan ◽  
Yu Li ◽  
Guohua Liu

The full-waveform inversion (FWI) of a Love wave has become a powerful tool for shallow-surface site characterization. In classic conjugate gradient algorithm- (CG) based FWI, the energy distribution of the gradient calculated with the adjoint state method does not scale with increasing depth, resulting in diminished illumination capability and insufficient model updating. The inverse Hessian matrix (HM) can be used as a preprocessing operator to balance, filter, and regularize the gradient to strengthen the model illumination capabilities at depth and improve the inversion accuracy. However, the explicit calculation of the HM is unacceptable due to its large dimension in FWI. In this paper, we present a new method for obtaining the inverse HM of the Love wave FWI by referring to HM determination in inverse scattering theory to achieve a preconditioned gradient, and the preconditioned CG (PCG) is developed. This method uses the Love wave wavefield stress components to construct a pseudo-HM to avoid the huge calculation cost. It can effectively alleviate the influence of nonuniform coverage from source to receiver, including double scattering, transmission, and geometric diffusion, thus improving the inversion result. The superiority of the proposed algorithm is verified with two synthetic tests. The inversion results indicate that the PCG significantly improves the imaging accuracy of deep media, accelerates the convergence rate, and has strong antinoise ability, which can be attributed to the use of the pseudo-HM.


2021 ◽  
Vol 80 (1) ◽  
pp. 99-155
Author(s):  
Xiucai Ding ◽  
Thomas Trogdon

We consider the conjugate gradient algorithm applied to a general class of spiked sample covariance matrices. The main result of the paper is that the norms of the error and residual vectors at any finite step concentrate on deterministic values determined by orthogonal polynomials with respect to a deformed Marchenko–Pastur law. The first-order limits and fluctuations are shown to be universal. Additionally, for the case where the bulk eigenvalues lie in a single interval we show a stronger universality result in that the asymptotic rate of convergence of the conjugate gradient algorithm only depends on the support of the bulk, provided the spikes are well-separated from the bulk. In particular, this shows that the classical condition number bound for the conjugate gradient algorithm is pessimistic for spiked matrices.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1353
Author(s):  
Qi Tian ◽  
Xiaoliang Wang ◽  
Liping Pang ◽  
Mingkun Zhang ◽  
Fanyun Meng

Three-term conjugate gradient methods have attracted much attention for large-scale unconstrained problems in recent years, since they have attractive practical factors such as simple computation, low memory requirement, better descent property and strong global convergence property. In this paper, a hybrid three-term conjugate gradient algorithm is proposed and it owns a sufficient descent property, independent of any line search technique. Under some mild conditions, the proposed method is globally convergent for uniformly convex objective functions. Meanwhile, by using the modified secant equation, the proposed method is also global convergence without convexity assumption on the objective function. Numerical results also indicate that the proposed algorithm is more efficient and reliable than the other methods for the testing problems.


Sign in / Sign up

Export Citation Format

Share Document