A Novel Self-adaptive Quantum Steganography Based on Quantum Image and Quantum Watermark

Author(s):  
Zhiguo Qu ◽  
Huangxing He ◽  
Songya Ma
2020 ◽  
Vol 14 (3) ◽  
pp. 291-312
Author(s):  
Hong Xiao ◽  
Panchi Li

Digital steganography is the art and science of hiding information in covert channels, so as to conceal the information and prevent the detection of hidden messages. On the classic computer, the principle and method of digital steganography has been widely and deeply studied, and has been initially extended to the field of quantum computing. Quantum image steganography is a relatively active branch of quantum image processing, and the main strategy currently used is to modify the LSB of the cover image pixels. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel steganography using reflected Gray code for color quantum images, and the embedding capacity of this scheme is up to 6 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 6-bit segments. For 6 bits in each segment, the first 3 bits are embedded into the second LSB of RGB channels of the cover image, and the remaining 3 bits are embedded into the LSB of RGB channels of the cover image using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSBs of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.


2018 ◽  
Vol 16 (02) ◽  
pp. 1850020 ◽  
Author(s):  
Panchi Li ◽  
Xiande Liu

In quantum image steganography, embedding capacity and security are two important issues. This paper presents a novel quantum steganography scheme using color images as cover images. First, the secret information is divided into 3-bit segments, and then each 3-bit segment is embedded into the LSB of one color pixel in the cover image according to its own value and using Gray code mapping rules. Extraction is the inverse of embedding. We designed the quantum circuits that implement the embedding and extracting process. The simulation results on a classical computer show that the proposed scheme outperforms several other existing schemes in terms of embedding capacity and security.


1963 ◽  
Vol 110 (12) ◽  
pp. 2280
Author(s):  
P.N. Nikiforuk ◽  
E.K. Lashyn

Informatica ◽  
2017 ◽  
Vol 28 (3) ◽  
pp. 415-438 ◽  
Author(s):  
Bekir Afşar ◽  
Doğan Aydin ◽  
Aybars Uğur ◽  
Serdar Korukoğlu

2018 ◽  
Vol 62 (3) ◽  
pp. 304011-3040111 ◽  
Author(s):  
Shih-An Li ◽  
Hsuan-Ming Feng ◽  
Sheng-Po Huang ◽  
Chen-You Chu

1984 ◽  
Author(s):  
D. GRAUPE ◽  
J. GROSSPIETSCH ◽  
S. BASSEAS

Sign in / Sign up

Export Citation Format

Share Document