High-Order Delayed Detached Eddy Simulation of Separated Flow with Self-Adaptive Dissipation

2020 ◽  
pp. 1-12
Author(s):  
Li Hao ◽  
Liu Wei ◽  
Wang Shengye ◽  
Wang Guangxue
2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040075
Author(s):  
Yu-Chen Yang ◽  
Zhen-Ming Wang ◽  
Ning Zhao

Flow past a prolate spheroid, which is a representative simplified configuration for vehicles such as maneuvering ships, submarines and missiles, comprises a series of complex flow phenomena including pressure-induced flow separation, which results in unsteady forces and movements that may be detrimental to vehicles’ performance. In this paper, a Delayed Detached Eddy Simulation (DDES) method combined with a new high-order U-MUSCL scheme is proposed to more precisely and accurately capture the flow separation and vortex structure. This method is applied to simulate the aerodynamic performance of the 6:1 prolate spheroid at an AOA of [Formula: see text] with the Reynolds number of [Formula: see text]. Axial pressure distribution of five individual chord wise sections and flow field structure of the aft body are analyzed. Numerical results agree well with the experimental data. It can be concluded that DDES combined with three-order U-MUSCL scheme demonstrates reliable performance since it captures the vortex structure of aft body distinctly and predicts the separation and reattachment points of the secondary vortex precisely.


2020 ◽  
Vol 65 (2) ◽  
pp. 1-12
Author(s):  
Johannes Letzgus ◽  
Manuel Keßler ◽  
Ewald Krämer

A highly loaded, high-speed turn flight of Airbus Helicopters' Bluecopter demonstrator helicopter is simulated to investigate dynamic stall using a loose computational fluid dynamics/structural dynamics (CFD/CSD) coupling of the flow solver FLOWer and the rotorcraft comprehensive code CAMRAD II. The rotor aerodynamics is computed using a high-fidelity delayed detached-eddy simulation (DDES). A three-degree-of-freedom trim of an isolated rotor is performed, yielding main-rotor control angles that agree well with the flight-test measurements. The flow field in this flight condition is found to be highly unsteady and complex, featuring massively separated flow, blade–vortex interaction, multiple dynamic-stall events, and shock-induced separation. The computed pitch-link loads are compared to flight-test measurements. This shows that all CFD/CSD cases underpredict the amplitudes of the flight test and yield phase shifts. However, overall trends agree reasonably. Also, varying the computational setup reveals that the shear stress transport–DDES turbulence model performs better than Spalart–Allmaras–DDES, that the consideration of the rotor hub and fuselage improves the agreement with flight-test data, and that the elastic twist plays only a minor role in the dynamic-stall events.


2017 ◽  
Vol 71 ◽  
pp. 199-216 ◽  
Author(s):  
Jia-ye Gan ◽  
Hong-Sik Im ◽  
Xiang-ying Chen ◽  
Ge-Cheng Zha ◽  
Crystal L. Pasiliao

2021 ◽  
pp. 1-10
Author(s):  
Zifei Yin ◽  
Paul Durbin

Abstract The adaptive, l2-omega delayed detached eddy simulation model was selected to simulate the flow in the V103 linear compressor cascade. The Reynolds number based on axial chord length is 138,500. Varies inflow turbulent intensities from 0% to 10% were tested to evaluate the performance of the adaptive model. The adaptive model is capable of capturing the laminar boundary layer and the large scale perturbations inside it. The instability of large scale disturbances signals the switch to a hybrid simulation of turbulent boundary layer -- the transition front is thus predicted. In the case of separation-induced transition, the adaptive model, which uses eddy simulation in separated flow, can predict the separation bubble size accurately. Generally, the adaptive, delayed detached eddy simulation model can simulate the transitional separated flow in a linear compressor cascade, with a correct response to varying turbulent intensities.


2019 ◽  
Vol 128 ◽  
pp. 09003
Author(s):  
Jęedrzej Mosiężny ◽  
Bartosz Ziegler

The study presents a computational study of a drag reduction device based on an active boundary layer control for a generic truck-trailer utility road vehicle. The conceptual device is in accordance with upcoming EU regulations regarding attachable aerodynamic devices for heavy utility vehicles. Design and principles of operation of the conceptual device are presented. The device is intended to increase decrease the trailer’s base drag coefficient by manipulation of the separated flow region behind the vehicle base. Results of a steady state Reynolds averaged analysis and Delayed Detached Eddy Simulation are presented to show the discrepancies of fluid flow patterns between baseline and augmented configuration as well as between mentioned CFD approaches. Results for drag reduction for baseline truck-trailer configuration and aerodynamically augmented configuration are presented.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Daniel C. Lyons ◽  
Leonard J. Peltier ◽  
Frank J. Zajaczkowski ◽  
Eric G. Paterson

Separated flow past a hump in a turbulent boundary layer is studied numerically using detached-eddy simulation (DES), zonal detached-eddy simulation (ZDES), delayed detached-eddy simulation (DDES), and Reynolds-averaged Navier–Stokes (RANS) modeling. The geometry is smooth so the separation point is a function of the flow solution. Comparisons to experimental data show that RANS with the Spalart–Allmaras turbulence model predicts the mean-field statistics well. The ZDES and DDES methods perform better than the DES formulation and are comparable to RANS in most statistics. Analyses motivate that modeled-stress depletion near the separation point contributes to differences observed in the DES variants. The order of accuracy of the flow solver ACUSOLVE is also documented.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Richard J. Jefferson-Loveday

Abstract A range of popular hybrid Reynolds-averaged Navier–Stokes -large eddy simulation (RANS-LES) methods are tested for a cavity and two labyrinth seal geometries using an in-house high-order computational fluid dynamics (CFD) code and a commercial CFD code. The models include the standard Spalart–Allmaras (SA) and Menter shear stress transport (SST) versions of delayed detached eddy simulation (DDES) and the Menter scale adaptive simulation (SAS) model. A recently formulated, enhanced, variant of SA-DDES presented in the literature and a new variant using the Menter SST model are also investigated. The latter modify the original definition of the subgrid length scale used in standard DDES based on local vorticity and strain. For all geometries, the meshes are considered to be hybrid RANS-LES adequate. Very low levels of resolved turbulence and quasi-two-dimensional flow fields are observed for the standard DDES and SAS models even for the test cases here that contain obstacles, sharp edges, and swirling flow. Similar findings are observed for both the commercial and in-house high-order CFD codes. For the cavity simulations, when using standard DDES and SAS, there is a significant under prediction of turbulent statistics compared with experimental measurements. The enhanced versions of DDES, on the other hand, show a significant improvement and resolve turbulent content over a wide range of scales. Improved agreement with experimental measurements is also observed for profiles of the vertical velocity component. For the first labyrinth seal geometry swirl velocities are more accurately captured by the enhanced DDES versions. For the second labyrinth seal geometry, the mass flow coefficient prediction using the enhanced models is significantly improved (up to 30%). Standard, industrially available hybrid RANS-LES models, when applied to the present canonical cases can produce little to no resolved turbulent content. The standard SA- and Menter-based DDES models can yield lower levels of eddy viscosity when compared to equivilent steady RANS simulations which means that they are not operating as RANS or LES. It is recommended that hybrid RANS-LES models should be extensively tested for specific flow configurations and that special care is exercised by CFD practitioners when using many of the popular hybrid RANS-LES models that are currently available in commercial CFD packages.


Sign in / Sign up

Export Citation Format

Share Document