Parallel Overlapping Schwarz with an Energy-Minimizing Coarse Space

Author(s):  
Alexander Heinlein ◽  
Axel Klawonn ◽  
Oliver Rheinbach
2020 ◽  
Vol 369 ◽  
pp. 113223
Author(s):  
Alice Lieu ◽  
Philippe Marchner ◽  
Gwénaël Gabard ◽  
Hadrien Bériot ◽  
Xavier Antoine ◽  
...  

2020 ◽  
Vol 70 (6) ◽  
pp. 1413-1444
Author(s):  
Elisa Hartmann

AbstractTo a coarse structure we associate a Grothendieck topology which is determined by coarse covers. A coarse map between coarse spaces gives rise to a morphism of Grothendieck topologies. This way we define sheaves and sheaf cohomology on coarse spaces. We obtain that sheaf cohomology is a functor on the coarse category: if two coarse maps are close they induce the same map in cohomology. There is a coarse version of a Mayer-Vietoris sequence and for every inclusion of coarse spaces there is a coarse version of relative cohomology. Cohomology with constant coefficients can be computed using the number of ends of a coarse space.


2021 ◽  
Vol 26 (2) ◽  
pp. 44
Author(s):  
Eric Chung ◽  
Hyea-Hyun Kim ◽  
Ming-Fai Lam ◽  
Lina Zhao

In this paper, we consider the balancing domain decomposition by constraints (BDDC) algorithm with adaptive coarse spaces for a class of stochastic elliptic problems. The key ingredient in the construction of the coarse space is the solutions of local spectral problems, which depend on the coefficient of the PDE. This poses a significant challenge for stochastic coefficients as it is computationally expensive to solve the local spectral problems for every realization of the coefficient. To tackle this computational burden, we propose a machine learning approach. Our method is based on the use of a deep neural network (DNN) to approximate the relation between the stochastic coefficients and the coarse spaces. For the input of the DNN, we apply the Karhunen–Loève expansion and use the first few dominant terms in the expansion. The output of the DNN is the resulting coarse space, which is then applied with the standard adaptive BDDC algorithm. We will present some numerical results with oscillatory and high contrast coefficients to show the efficiency and robustness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document