Asymptotic Theory of Neutral Linear Stability Contours in Plane Shear Flows of a Vibrationally Excited Gas

Author(s):  
Yurii N. Grigoryev ◽  
Igor V. Ershov
2021 ◽  
Vol 33 (5) ◽  
pp. 054106
Author(s):  
D. Bansal ◽  
D. Ghosh ◽  
S. Sircar
Keyword(s):  

1990 ◽  
Vol 203 ◽  
Author(s):  
Richard J. Farris ◽  
M. A. Maden ◽  
K. Tong

ABSTRACTThe state of stress for a uniform coating away from the edges reduces to that of plane stress, two in-plane normal stresses, and an in-plane shear stress. For this state, the interface between the coating and the substrate is totally stress free. Since the substrate and the coating are not interacting mechanically, an internal section of the substrate can be removed creating a tensioned drum-like membrane without altering the stress state. Holographic interferometry of vibrationally excited membranes is used to evaluate the stress. Using this technique, up to thirty vibrational modes can be obtained. This high degree of redundancy enables one to determine the one shear and two normal stresses that act in the plane of the coating. The only physical property requires is the coating density. The density is obtained from commonly reported literature values. Simple variations on the membrane vibration scheme, e.g., cutting the membrane to create a uniaxially tensioned ribbon, enables one to determine the in-plane Poisson's ratio and shearmodulus.In separate but related experiments on commercially made free-standing films with residual orientation, the above techniques, combined with special free and axially constrainedcompressibility experiments should enable all of the Poisson's ratios and elasticmoduli for an orthotropic material (nine elastic constants) to be determined. Methods for measuring the state of stress and the elastic constants are required to predict the state of stress in complex coating geometries.


Author(s):  
Sharath Jose ◽  
Rama Govindarajan

Small variations introduced in shear flows are known to affect stability dramatically. Rotation of the flow system is one example, where the critical Reynolds number for exponential instabilities falls steeply with a small increase in rotation rate. We ask whether there is a fundamental reason for this sensitivity to rotation. We answer in the affirmative, showing that it is the non-normality of the stability operator in the absence of rotation which triggers this sensitivity. We treat the flow in the presence of rotation as a perturbation on the non-rotating case, and show that the rotating case is a special element of the pseudospectrum of the non-rotating case. Thus, while the non-rotating flow is always modally stable to streamwise-independent perturbations, rotating flows with the smallest rotation are unstable at zero streamwise wavenumber, with the spanwise wavenumbers close to that of disturbances with the highest transient growth in the non-rotating case. The instability critical rotation number scales inversely as the square of the Reynolds number, which we demonstrate is the same as the scaling obeyed by the minimum perturbation amplitude in non-rotating shear flow needed for the pseudospectrum to cross the neutral line. Plane Poiseuille flow and plane Couette flow are shown to behave similarly in this context.


1996 ◽  
Vol 06 (02) ◽  
pp. 409-413
Author(s):  
A. J. CONLEY

The flow of an incompressible viscous fluid between parallel plates becomes unstable when the plates are tumbled. As the tumbling rate increases, the flow restabilizes. This phenomenon is elucidated by path-following techniques. The solution of the Navier-Stokes equations is approximated by spectral techniques. The linear stability of these solutions is studied.


Sign in / Sign up

Export Citation Format

Share Document