physical property
Recently Published Documents


TOTAL DOCUMENTS

1913
(FIVE YEARS 485)

H-INDEX

57
(FIVE YEARS 10)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 165
Author(s):  
Hao Qin ◽  
Zihao Wang ◽  
Zhen Song ◽  
Xiang Zhang ◽  
Teng Zhou

The separation of 1,3-butadiene (1,3-C4H6) and 1-butene (n-C4H8) is quite challenging due to their close boiling points and similar molecular structures. Extractive distillation (ED) is widely regarded as a promising approach for such a separation task. For ED processes, the selection of suitable entrainer is of central importance. Traditional ED processes using organic solvents suffer from high energy consumption. To tackle this issue, the utilization of ionic liquids (ILs) can serve as a potential alternative. In this work, a high-throughput computational screening of ILs is performed to find proper entrainers, where 36,260 IL candidates comprising of 370 cations and 98 anions are involved. COSMO-RS is employed to calculate the infinite dilution extractive capacity and selectivity of the 36,260 ILs. In doing so, the ILs that satisfy the prespecified thermodynamic criteria and physical property constraints are identified. After the screening, the resulting IL candidates are sent for rigorous process simulation and design. 1,2,3,4,5-pentamethylimidazolium methylcarbonate is found to be the optimal IL solvent. Compared with the benchmark ED process where the organic solvent N-methyl-2-pyrrolidone is adopted, the energy consumption is reduced by 26%. As a result, this work offers a new IL-based ED process for efficient 1,3-C4H6 production.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xingying Wang ◽  
Na Liu ◽  
Junxiang Nan ◽  
Xiaolin Wang ◽  
Dazhong Ren

In this article, the characteristics of Chang 8 reservoir of Triassic Yanchang Formation in northern Shaanxi are studied by using polarizing microscope, field emission scanning electron microscope, image particle size, X-ray diffraction analysis of clay, and constant pressure mercury intrusion. The study shows that the target layer is in a relatively stable and uniform sinking burial period after deposition, and the lithology composition in the area is relatively complex, mainly composed of debris–feldspar sandstone and feldspar sandstone, with the characteristics of fine grain and high content of interstitial material. The porosity of the reservoir is generally between 4% and 12%, with an average of 8.05%. The permeability is generally between 0.03 × 10−3 and 0.5 × 10−3 μm2, with an average of 0.16 × 10−3 μm2. Strong compaction and well-developed cementation of calcareous, siliceous, and authigenic illite are important reasons for the formation of extra-low porosity and extra-low permeability reservoirs. But at the same time, because of the protective effect of chlorite film, some residual intergranular pores are preserved, which makes the some reservoirs with relatively good physical property, forming a local relatively high-porosity and high-permeability section of the “highway.”


2022 ◽  
Author(s):  
Qingze Li ◽  
Xiping Chen ◽  
Lei Xie ◽  
Tiexin Han ◽  
Jiacheng Sun ◽  
...  

Abstract Here, simultaneous in-situ calibration of pressures and temperatures was performed in a hinge-type second-stage cubic large volume press (LVP) up to 15 GPa and 1400 K by an acoustic travel-time approach. Based on the recently reported P-t S and P-T-t P -t S equations for Al2O3 buffer rod, the cell pressures and temperatures in the chamber of LVP were in-situ determined, in comparison with those by conventional off-line (or fixed-points) pressure calibration method and direct thermocouple measurement, respectively. It is found that the cell pressures of the LVP chamber are significantly reduced after annealing at simultaneous high pressures and high temperatures, owing to the stress relaxation as accumulate in the LVP chamber. This acoustic travel-time method is validated to be a good way for precise determination of thermal (cell) pressures at high temperature conditions, and is of great importance and necessity to conduct in-situ physical property measurements under extreme high P-T conditions, especially when the precious synchrotron X-ray/neutron diffraction beams are not available.


2022 ◽  
Vol 1048 ◽  
pp. 65-71
Author(s):  
Prasanna P. Kulkarni ◽  
B. Siddeswarappa ◽  
Mallikarjun Channalli

Utilization of agricultural by products as a reinforcement which offers a effective consequences on composite materials in the present days. Also a number of the agro waste substances as an ash are secondary filler material for Metal matrix composite materials. In this paper observe changed into achieved on characterization of agriculture waste ashes like Rice husk ash (RHA) and ASA (Areca sheath ash), burned at Controlled temperatures at 650°C in a metallurgical furnace at 3 exceptional durations of instances like 1hr, 2hr, and 3hr. Also each ashes were chemically and physically characterized, consequently decide the proportion of composition. The ensuing ashes have been analyzed the use of chemical evaluation via XRF and volumetric, gravimetric and instrumental test, SEM and EDS to determine their chemical composition which may be similarly used as reinforcement with metal matrix composites. Results acquired that impact of burning temperature and time on Chemical composition, Physical property, Loss of ignition (LOI) and Density. The ashes have been discovered to include excessive percent of silica content of 90% to 92% in Rice husk ash and 74% to 78% in Areca palm leaf sheath ash, after which accompanied through alumina content of 0.89% to 0.98% in each substances at 650oc temperatures respectively, additionally density of 0.98gm/cc for RHA and 1.12gm/cc Areca palm leaf sheath ash. Loss on ignition (LOI) of 4.5% to5.5% acquired on the equal temperature. These consequences suggests that rice husk ash and Areca sheath ash include excessive percent silica and a few alumina and may be utilized in chemical formulations requiring silica which include in metal matrix composites.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Zezhou Guo ◽  
Ruihua Hao ◽  
Qianli Lv ◽  
...  

Aiming to investigate salt-frost heaving rules and the mechanical properties of natural saline soil along the Duku Highway subjected to multiple freezing-thawing cycles, we collected natural saline soil samples from the alluvial-proluvial plain in front of the Dushanzi Mountain at the starting point of the Duku Highway. Then, we conducted mineral composition analysis tests, essential laboratory physical property measurement, large scale multiple freezing-thawing cyclic salt-frost heaving tests, shear strength tests, and unconfined compressive strength tests on the samples. According to the test results presented, the collected saline soil differed from saline soil in other regions and fell into “chlorite saline soils.” As the number of freezing-thawing cycles increased, the overall salt-frost heaving capacity increased and then decreased in the freezing process but first reduced and then increased in the thawing process. Thus, the salt-frost heaving capacity was cumulative in freezing/thawing cycles. The peak salt-frost heaving capacity reached a maximum after 1 freezing-thawing cycle and then dropped drastically and fluctuated regularly. After 6 freezing-thawing cycles, the displacement deformation and time formed a new equilibrium. After 7 freezing-thawing cycles, the displacement and deformation of the soil no longer appear negative. As the number of freezing-thawing cycles increased, the cohesive force of saline soil first increased and then dropped steadily, the internal friction angle first dropped and then increased steadily, and the unconfined shear strength first increased and then decreased. These research results provided data supporting the prevention and controlling highway saline soil disasters with insightful references for the other projects in this region.


2022 ◽  
pp. 284-308
Author(s):  
M. Shamshi Haasan ◽  
Ali Q. Alorabi ◽  
Touseef Amna

Water pollution is one of the key global problems which require immediate attention. Worldwide, it is predicted that more than 50% of countries will encounter water scarcities by 2025 which will increase to 75% by 2075. Each year more than 5 million people die due to water-borne diseases. The threat due to pollution by industries, exponential population growth, urbanization, by pathogenic microorganisms from human and animal waste, etc. The rise in water pollution and its subsequent effects on human health and environment is a matter of great concern. The water pollutants ought to be removed to improve water quality for human use. Nanoparticles or zero dimensional materials have been extensively studied since long, whereas one dimensional material (nanorods, nanotubes, nanowires, or nanofibers) have recently grabbed a lot of interest from global researchers. Nanofibers having large aspect ratio are grabbing incredible attention owing to dependency of physical property on directionality having high porosity and surface area as compared to normal fibers.


Author(s):  
Basingala Praveen Kumar ◽  
Neigapula Venkata Swamy Naidu

The main aim of this paper is an experimental investigation is to study the thermophysical and mechanical properties of polyacrylonitrile (PAN) based carbon fiber fabric and phenolic resin composites (Cf-PR) for thermal protection system (TPS) for high temperature applications. Composite laminates of Cf-PR were prepared by hand-layup method by considering the curing temperature of 1500 C at 100 kg/cm2 for 4hrs under hydraulic hot press machine. The mechanical properties of the materials such as the interlaminar shear stress (ILSS), flexural strength, compression strength, bar coal hardness, thermal property such as thermal conductivity and physical property such as density were studied. It was shown that the thermophysical and mechanical properties are responsibility for the higher strength and higher temperature applications for TPS.


2022 ◽  
Author(s):  
Junpeng Zhang ◽  
Xinyu Du ◽  
Shilong Jiang ◽  
Qing gang Xie ◽  
Guangqing Mu ◽  
...  

This study investigated whether casein (CN) fractions exhibit better physical propertiess and digestibility than native casein micelle presently used in the production of infant formula. Structural performance of native casein...


2021 ◽  
Vol 37 (6) ◽  
pp. 778-790
Author(s):  
Ji Hyun Yoo ◽  
Myoungju Choie ◽  
Myeong Seong Lee ◽  
Yuri Kim

The Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri are state-designated heritage (treasure) statues having the Buddha style of the Goryeo dynasty from the 6th century. Conservation scientific investigations were conducted to understand the preservation status of these stone Buddha statues and to establish a conservation plan. The Stone Seated Buddha Triad and Stone Standing Buddha are composed of fine-medium grained biotite granite, which is considered to be of the same origin owing to their low magnetic susceptibility distribution of less than 0.2 (×10-3 SI unit) and similar mineral characteristics. The Stone Seated Buddha Triad has highly homogenous mineral composition and particle size, whole-rock magnetic susceptibility, and geochemical characteristics very similar to those of the nearby outcrop. It was confirmed that a combination of physical, chemical, and biological factors affects the Stone Buddha statues. In particular, both the Stone Seated Buddha Triad and Stone Standing Buddha tend to be chipped off from the front and cracked and scaled from the back. The Stone Standing Buddha located outdoors experiences granularity decomposition and black algae formation, which accelerate the weathering under unfavorable conservation environments. The result of non-destructive physical property diagnosis using ultrasonic velocity showed that both the Stone Seated Buddha Triad and Stone Standing Buddha have been completely weathered (CW), indicating very poor physical properties.


Sign in / Sign up

Export Citation Format

Share Document